A research topic which can be experimental and/or theoretical has to be pursued. It should fulfill the requirements set by lzmir Institute of Technology Graduate Program.

Elasticity and plasticiticity theories. Yielding criteria for ductile materials. Plastic deformation of single and polycrstalline materials. Dislocation mechanics. Strengthening effects in metals, ceramics and their composites. Failure mechanisms and fracture.

Elasticity and plasticiticity theories. Yielding criteria for ductile materials. Plastic deformation of single and polycrstalline materials. Dislocation mechanics. Strengthening effects in metals, ceramics and their composites. Failure mechanisms and fracture. Testing methods of engineering metals. Fatique and creep testing and properties of engineering materials. High strain rate testing of metals and composites.

Basic mechanics: slab, shear lag and Eshelby’s models. Yielding and internal stresses. Thermal stresses and creep. Interfacial bond and chemistry, fracture toughness and performance. Failure mechanisms. Production techniques and microstructure development. Testing and characterization methods. Application areas.

Elastic and plastic stress waves. High strain rate testing methods. Plastic deformation at high strain rates. Constitutive equations for metals. Mechanics and microstructure of adiabatic shear band formation. Failure and fracture associated with dynamic loading. Civilian and military applications of high strain rate phenomena.

What is the impact of quality and the meaning of quality. Product, technology and the internationalization of quality. Quality engineering. Process-Control Engineering. Fundamentals of statics ac quality control tools. Control charts. Reliability.

The importance of Nondestructive Testing in quality assurance. Nondestructive determination of imperfections in materials. The techniques of the commonly used NDT methods such as ultrasonic, radiographic, liquid penetrant, magnetic particle and eddy current testing. Application of nondestructive testing of specific problems of industry.

Study of the mechanical, thermomechanical, physical and microstructural characterisation of materials. Materials systems include metals, ceramics, polymers, composites and surfaces and interfaces in these systems. Applications to mechanical property characterisation. Fracture and fractography. Surfaces and interfaces. Dynamic mechanical analysis of polymeric materials. Optic and scanning electron microscopy. Polymer molecular structure determination and durability experiments.

Solidification. Nucleation and Growth in Pure Metals. Alloy Solidification. Casting., Heat Transfer in Casting and Welding.

Study of the linear elastic fracture mechanics, stress analysis of cracks, elastic-plastic fracture mechanics, crack growth, fracture mechanisms in metals and non-metals, ductile fracture, cleavage, fracture of plastics, ceramics and composites, fracture toughness testing of metals and non-metals and fatigue crack propagation.

Overview of basic numerical methods. Types of partial differential equations. Boundary and initial conditions. Discretisation process by finite differences. Explicit and implicit methods. Alternating direction implicit method. Multigrain and multilevel methods. General formulations and weighted residual methods. Finite volume method. Finite element method and interpolation Sturm-Liouville equation and spectral method.

Introduction to Phase Change Problems. Exact solution of the problems. Integral Method of Solution. Introduction to Numerical Solution Methods. Temperature Formulation and Enthalpy Formulation. Case Studies.

Composite material constituents. Microstructure-performance relationships. Strength of long-fiber composites. Thermoelastic behaviour of laminated composites. Short fiber composites. Hybrid composites. Flexible composites. The interface region, interface formation mechanisms, measurement of bonding strength. Strength and toughness of composites. Processing technologies for polymer, metal and ceramic matrix composites and their applications.

Hybrid-mixed formulation. Beam elements, plate elements, flat-shell elements. Modelling of laminated composites. Small-strain large deflection problems, rigid-plastic large deformation problems, large elastic-plastic deformation problems.

This course is designed to offer the ability to conduct finite element analysis in structural vibrations.

This course is designed to offer knowledge in analytical methods in vibration analysis of continuous and discrete systems with and without damped.

Thermodynamic relations. Mixtures and solutions. Gas Mixtures. Chemical reactions. Introduction to phase and chemical equilibrium. Quantum Mechanics. Molecular Distributions and Models. Statistical Mechanics and Thermodynamics. Applications of Statistical Thermodynamics.

Introduction. Phase equilibrium diagrams of binary, ternary and multicomponent systems. Use of such diagrams for service performance analysis of ceramic materials. Phase assemblage determination by the use of Dahl’s method. High temperature corrosion of refractory ceramics. Thermal properties of refractory non-oxides like SiC, graphite,etc.

Heat conduction fundementals. The seperation of variables in the rectangular, cylindirical and spherical coordinate systems. The use of Duhamel’s theorem. One dimensional composite medium.

Introduction. Basics of statistics. Use of spreadsheets for laboratory calculations. The nature of experimental variation. Using spreadsheets to make charts and graphs. Introduction to ANOVA tables. Using spreadsheets to analyze Latin-square experimental design, Factorial experimental designs, Box-Hunter experimental designs, and Ruggedness designs.

Ejectromagnetic background. Definitions of fundamental concepts. Interaction of radiation with homogeneous matter. Interaction of radiation with interfaces. Blackbody radiation. Radiation from real surfaces. Radiative energy transfer between surfaces. Radiative energy transfer in enclosures. Radiation in absorbing, emitting homogeneous media.

Forced convective heat transfer in laminar and turbulent boundary layer flows is studied, as well as internal and external flows with arbitrary variations of surface temperature and heat flux. Exact and approximate formulations using similarity solutions, separation of variables, integral methods and superposition are investigated. The topics of turbulent transport process, Reynolds analogy, and empirical results, high velocity flow, heat exchanger, and free convection are also addressed.

Fundamental concepts. Mathematical preliminaries. Fundamental equations of flow. Analysis of motion. Analysis of forces, stresses. Equations of flow theorems. Incompressible potential flow.

Theory and design of hydraulic and pneumatic control systems and components, their applications. PressureAlow relationships for hydraulic and pneumatic valves. Valve configurations. Valve operating forces. Closed loop systems. Control and measurement of pressure, flow speed, position, force and other quantities. Application of basic principles to component and system design.

Combustion theory and practice. Chemical kinetics governing combustion reactions, reaction of droplets and particulate dispersions. Mechanisms and properties of mixing-controlled and reaction-controlled flames. Influence of temperature, extent of mixing and equivalence ratio on combustion efficiency. Radiative heat transfer in combustion systems. Current trends and advanced combustion methods, radiant, heat recirculating, fluidized bed and Coanda burners. Introduction to analysis of combustion processes and combustion technology for gaseous, liquid and solid fuels. Application to furnaces, fluxed-bed, fluidized-bed and suspension burning boilers.

Radiant Energy transfer and its application to solar exchangers; energy balances for solar exchangers, review of theory, economics, and practice of solar energy applications.

Hydrogen Production Techniques : Steam reforming of hydrocarbons, Partial oxidation, solar generation of hydrogen from water : Photovoltaic cell plus electrolyzer1 Photoelectrochemical cells, Photobiological systems, Photodegradation systems. Hydrogen usage as fuel in internal combustion engines, in steam generation for steam turbines and in fuel cells. Hydrogen storage techniques: Gas storage, Liquid storage, Storage in porous media. Hydrogen safety.

Types of passive solar systems. Elements of passive solar systems. Thermodynamic and Economical analysis of passive solar systems. Examples of applied passive solar systems in the World.

Introduction to geothermal energy. Geothermal direct use applications in the world. Space heating equipment and space heating systems. Heat exchangers, downhole heat exchangers, piping. Geothermal greenhouse design. Aquaculture. Refrigeration. Industrial usage. Ground-source heat pumps. Environmental considerations. Field trips. Design project.

Types of thermal solar power plants. Calculation of thermal solar power plants. Thermodynamic analysis of thermal solar power plants in the World. Economic analysis of thermal solar power plants.

Theory of wind turbines. Theory of wind streams. Types of wind turbines. Design of wind turbines. Wind farms. Economic analysis of wind power plants. Technical potentials.

Fossil fuels such as coal, oil, natural gas, shale oil and tar sands are usual resources of energy. Solar energy, wind power, geothermal energy and hydrogen energy are likely going to be potential energy sources in the future. These resources will be examined and their potential for future energy demand of the world will be discussed and related technologies will be explained briefly. Also these resources will be analyzed and compared economically.

Fuel cycles for conventional and non-conventional energy resources, relationships between environmental impacts and the conversion or utilization of energy, measures of system and process efficiency, detailed study and analysis of coal-based energy systems including conventional and advanced power generation, synthetic fuels production and industrial processes, mathematical modeling of energy environmental interactions and tradeoffs, their dependency on technical and policy parameters, methodologies for energy and environmental forecasting, applications to issues of current interest.

Introduction to geothermal energy. Fluid flow: fluid mechanics, single phase pipe flow. Cycles: geothermal cycles, exergy. Heat transfer: heat exchangers, downhole heat exchangers. Mass transfer and waste heat rejection: moisture transfer, cooling towers, condensers. Gas extraction. Field trips. Design project.

The objective of this course is to offer the student the basics of Metal Cutting, the importance of tool life and tool wear and machine tool vibration.

Stress and strain tensors. Strain-displacement relations. Plane stress,plane strain. Biharmonic equations. Polynomial Solutions. Fourier series solutions. Axisymmetric problems. Strain energy methods. Torsion, bending.

Introduction to conventional AI topics, and recently surging intelligent optimization schemes. From the theory of Neural Networks, to the scheduled cooling in parameter optimization in SA. Inductive and Deductive decision making, simulation of natural processes where nature is at her best : The evolution. It is intended to cover a range of topics from classical to modern computational intelligence.

Introduction to modern kinematic analysis. Analytical representation of motions. Euler-Savary equation. Curvature theory. Instantaneous invariants and higher accelerations. Cams. Three dimensional mechanisms. Intermittent mechanisms.

Robotics and robotic manipulators. Hartenberg-Denavit convection. Rotation matrices. Homogeneous transformations. Direct and inverse kinamatics. Jacobian matrix. Velocity and acceleration analyses. Dynamic force analysis via Newton-Euler formulation. Motion equations via Lagrangian formulation. Trajectory planning. Independent joint control Control with computed torque method. Compliant motion control. Hybrid control with position and force feedbacks.

Computer organization: Binary logic1 instruction and data processing. Computer interfacing : Digital-to-analog conversion, analog-to-digital conversion interrupt interfacing. Sensors for computer control. Command generation in machine control: Use for linear and cubic polynomials and spline functions, open-loop position control of step motors.

Types of machine tools. General requirements in the design of machine tools. Geometry and performance of cutting tools. Basic theories of metal cutting. Actuators and drive systems. Slide ways. Spindle and spindle bearings. Control and operating devices. Cooling systems. Work holding devices. Machine tool structures. Machine tool dynamics.

Strategic issues in Manufacturing Planning and Control (MPC). Material Requirements Planning (MRP) versus Just-in-Time (JIT) implementations. Manufacturing Resource Planning (MRPII). Distribution Requirements Planning (DRP). Optimized Production Technology (OPT), Period Batch Control. Capacity and Production Planning. Demand Management. Computer support, system conversion and integration issues in MPC.

Directed group study of special topics in Mechanical Engineering.

Directed group study of special topics in Mechanical Engineering.

A seminar must be given by each student on his research area which is graded by academic member of staff on a passed/failed basis. The topic of the seminar can be decided by student and his supervisor

A seminar must be given by each student on his research area which is graded by academic member of staff on a passed/failed basis. The topic of the seminar can be decided by student and his supervisor.

Original research work done by the student under supervisor of an advisor and written in the graduate thesis format.

M.S. Students choose and study a topic under the guidance of a faculty member normally his/her advisor.

Graduate students as a group or a Ph.D. student choose and study advanced topics under the guidance of a faculty member normally his/her advisor