Mechatronics-Robotics
- Working Group
- Laboratories
- Publications
- Projects
Control, Artificial Intelligence, Design Laboratory
Responsible Faculty Member
- Mechanical Engineering Building (Z34)
- +90 232 750 6754
Human-Robot Interaction Laboratory
Responsible Faculty Member
- Mechanical Engineering Building (Z56)
- +90 232 750 6778
Mechatronics Laboratory
Responsible Faculty Member
- Mechanical Engineering Building (Z31)
- +90 232 750 6752
Modeling and Prototyping Laboratory
Responsible Faculty Members
- Mechanical Engineering Building (Z57)
- +90 232 750 6757
Robotics Laboratory
Responsible Faculty Member
- Mechanical Engineering Building (Z30)
- +90 232 750 6751
2024 |
Liao, Yuan; Kiper, Gokhan; Krishnan, Sudarshan Mobility analysis of tripod scissor structures using screw theory Journal Article MECHANISM AND MACHINE THEORY, 191 , 2024. @article{WOS:001081762000001, title = {Mobility analysis of tripod scissor structures using screw theory}, author = {Yuan Liao and Gokhan Kiper and Sudarshan Krishnan}, doi = {10.1016/j.mechmachtheory.2023.105468}, year = {2024}, date = {2024-01-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {191}, abstract = {Mechanisms consisting of spatial scissor units have different kinematic behaviors than those of planar scissors. However, their kinematics, especially the mobility analysis, has not received enough attention. Two types of deployable asseblies are analyzed in this paper, namely the translational and mirrored assemblies. Both the assemblies are made of tripod scissor units, and their instantaneous mobility are examined using screw theory. The study starts on the configuration where all the members have the identical deployment angle. Firstly, the geometric property of each assembly was studied. Then, screw-loop equations were developed based on graph theory and closure equations. Finally, the mobility of each assembly was computed using linear algebra. Following the analysis, physical prototypes were constructed to validate the results, and several different motion modes were obtained for the translational assembly. The analysis reveals different kinematic behaviors of the two assemblies. In the given configuration, the translational assemblies have four instantaneous degrees of freedom, while the mirrored assemblies have only a single instantaneous degree of freedom.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Mechanisms consisting of spatial scissor units have different kinematic behaviors than those of planar scissors. However, their kinematics, especially the mobility analysis, has not received enough attention. Two types of deployable asseblies are analyzed in this paper, namely the translational and mirrored assemblies. Both the assemblies are made of tripod scissor units, and their instantaneous mobility are examined using screw theory. The study starts on the configuration where all the members have the identical deployment angle. Firstly, the geometric property of each assembly was studied. Then, screw-loop equations were developed based on graph theory and closure equations. Finally, the mobility of each assembly was computed using linear algebra. Following the analysis, physical prototypes were constructed to validate the results, and several different motion modes were obtained for the translational assembly. The analysis reveals different kinematic behaviors of the two assemblies. In the given configuration, the translational assemblies have four instantaneous degrees of freedom, while the mirrored assemblies have only a single instantaneous degree of freedom. |
Emet, Hazal; Gür, Berke; Dede, Mehmet İsmet Can The design and kinematic representation of a soft robot in a simulation environment Journal Article Robotica, 42 (1), pp. 139 – 152, 2024. @article{Emet2024139, title = {The design and kinematic representation of a soft robot in a simulation environment}, author = {Hazal Emet and Berke Gür and Mehmet İsmet Can Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177169148&doi=10.1017%2fS026357472300139X&partnerID=40&md5=9d8bb2595da002ed43f0667f2d03c7f8}, doi = {10.1017/S026357472300139X}, year = {2024}, date = {2024-01-01}, journal = {Robotica}, volume = {42}, number = {1}, pages = {139 – 152}, abstract = {The increase of human presence in the subsea and seabed environments necessitates the development of more capable and highly dexterous, innovative underwater manipulators. Biomimetic soft-robot arms represent a promising candidate for such manipulation systems. However, the well-known modeling techniques and control theories of traditional rigid robots do not apply to soft robots. The challenges of kinematic and dynamic modeling of soft robots with infinite degrees of freedom require the development of dedicated modeling methods. A novel procedure for representing soft-robotic arms and their motion in a rigid-body simulation environment is proposed in this paper. The proposed procedure relies on the piecewise constant curvature approach to simplify the very complex model of hyper-redundant soft-robotic arms, making it suitable for real-time applications. The proposed method is implemented and verified to be used in model-mediated teleoperation of the soft arms of a biomimetic robotic squid designed for underwater manipulation as a case study. © 2023 The Author(s). Published by Cambridge University Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The increase of human presence in the subsea and seabed environments necessitates the development of more capable and highly dexterous, innovative underwater manipulators. Biomimetic soft-robot arms represent a promising candidate for such manipulation systems. However, the well-known modeling techniques and control theories of traditional rigid robots do not apply to soft robots. The challenges of kinematic and dynamic modeling of soft robots with infinite degrees of freedom require the development of dedicated modeling methods. A novel procedure for representing soft-robotic arms and their motion in a rigid-body simulation environment is proposed in this paper. The proposed procedure relies on the piecewise constant curvature approach to simplify the very complex model of hyper-redundant soft-robotic arms, making it suitable for real-time applications. The proposed method is implemented and verified to be used in model-mediated teleoperation of the soft arms of a biomimetic robotic squid designed for underwater manipulation as a case study. © 2023 The Author(s). Published by Cambridge University Press. |
2023 |
Gorgulu, Ibrahimcan; Dede, Mehmet Ismet Can; Kiper, Gokhan Stiffness modeling of a 2-DoF over-constrained planar parallel mechanism Journal Article MECHANISM AND MACHINE THEORY, 185 , 2023. @article{WOS:000966404700001, title = {Stiffness modeling of a 2-DoF over-constrained planar parallel mechanism}, author = {Ibrahimcan Gorgulu and Mehmet Ismet Can Dede and Gokhan Kiper}, doi = {10.1016/j.mechmachtheory.2023.105343}, year = {2023}, date = {2023-07-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {185}, abstract = {Stiffness model acquisition of over-constrained parallel mechanisms is relatively difficult since they have more than necessary kinematic loops. In this study, a stiffness modeling solution for over-constrained parallel mechanisms is proposed while considering the computational cost efficiency. Three contributions of the paper are: (1) Presenting the stiffness modeling procedure for serially connected closed-loop structures by using the Virtual Joint Method (2) Considering the effect of dynamic auxiliary forces and dynamic external forces on the mobile platform's deflection and achieving a direct solution by using superposition principle (3) A model fitting procedure for modifying the stiffness coefficients to comply with the experimental data. A 2 degrees-of-freedom over-constrained parallel mechanism is investigated as a case study. However, the proposed stiffness model is 6-DoF since compliant deflections occur in any direction. A finite element analysis and an experimental study verify the model's results.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Stiffness model acquisition of over-constrained parallel mechanisms is relatively difficult since they have more than necessary kinematic loops. In this study, a stiffness modeling solution for over-constrained parallel mechanisms is proposed while considering the computational cost efficiency. Three contributions of the paper are: (1) Presenting the stiffness modeling procedure for serially connected closed-loop structures by using the Virtual Joint Method (2) Considering the effect of dynamic auxiliary forces and dynamic external forces on the mobile platform's deflection and achieving a direct solution by using superposition principle (3) A model fitting procedure for modifying the stiffness coefficients to comply with the experimental data. A 2 degrees-of-freedom over-constrained parallel mechanism is investigated as a case study. However, the proposed stiffness model is 6-DoF since compliant deflections occur in any direction. A finite element analysis and an experimental study verify the model's results. |
Aldanmaz, Ataol Behram; Ayit, Orhan; Kiper, Gökhan; Dede, Mehmet İsmet Can Gravity compensation of a 2R1T mechanism with remote center of motion for minimally invasive transnasal surgery applications Journal Article Robotica, 41 (3), pp. 807 – 820, 2023, (All Open Access, Green Open Access). @article{Aldanmaz2023807, title = {Gravity compensation of a 2R1T mechanism with remote center of motion for minimally invasive transnasal surgery applications}, author = {Ataol Behram Aldanmaz and Orhan Ayit and Gökhan Kiper and Mehmet İsmet Can Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148022623&doi=10.1017%2fS0263574722000534&partnerID=40&md5=d9e00d3ba2c7864df127963817903586}, doi = {10.1017/S0263574722000534}, year = {2023}, date = {2023-01-01}, journal = {Robotica}, volume = {41}, number = {3}, pages = {807 – 820}, abstract = {This work addresses the gravity balancing of a 2R1T (2 rotations - 1 translation) mechanism with remote center of motion. A previously developed balancing solution is modified and applied to a prototype, and test results are presented. The mechanism is an endoscope holder for minimally invasive transnasal pituitary gland surgery. In this surgery, the endoscope is inserted through a nostril of the patient through a natural path to the pituitary gland. During the surgery, it is vital for the manipulator to be statically balanced so that in case of a motor failure, the patient is protected against any harmful motion of the endoscope. Additionally, static balancing takes the gravitational load from the actuators and hence facilitates the control of the mechanism. The mechanism is a 2URRR-URR type parallel manipulator with three legs. The payload mass is distributed to the legs on the sides. By using counter-masses for two links of each leg, the center of mass of each leg is lumped on the proximal link which simplifies the problem of balancing of a two degree-of-freedom inverted pendulum. The two proximal links with the lumped mass are statically balanced via springs. Dynamic simulations indicate that when the mechanism is statically balanced, generated actuator torques are reduced by 93.5%. Finally, the balancing solution is implemented on the prototype of the manipulator. The tests indicate that the manipulator is statically balanced within its task space when the actuators are disconnected. When the actuators are connected, the torque requirements decrease by about 37.8% with balancing. © The Author(s), 2022. Published by Cambridge University Press.}, note = {All Open Access, Green Open Access}, keywords = {}, pubstate = {published}, tppubtype = {article} } This work addresses the gravity balancing of a 2R1T (2 rotations - 1 translation) mechanism with remote center of motion. A previously developed balancing solution is modified and applied to a prototype, and test results are presented. The mechanism is an endoscope holder for minimally invasive transnasal pituitary gland surgery. In this surgery, the endoscope is inserted through a nostril of the patient through a natural path to the pituitary gland. During the surgery, it is vital for the manipulator to be statically balanced so that in case of a motor failure, the patient is protected against any harmful motion of the endoscope. Additionally, static balancing takes the gravitational load from the actuators and hence facilitates the control of the mechanism. The mechanism is a 2URRR-URR type parallel manipulator with three legs. The payload mass is distributed to the legs on the sides. By using counter-masses for two links of each leg, the center of mass of each leg is lumped on the proximal link which simplifies the problem of balancing of a two degree-of-freedom inverted pendulum. The two proximal links with the lumped mass are statically balanced via springs. Dynamic simulations indicate that when the mechanism is statically balanced, generated actuator torques are reduced by 93.5%. Finally, the balancing solution is implemented on the prototype of the manipulator. The tests indicate that the manipulator is statically balanced within its task space when the actuators are disconnected. When the actuators are connected, the torque requirements decrease by about 37.8% with balancing. © The Author(s), 2022. Published by Cambridge University Press. |
Dede, Mehmet İsmet Can; Büyüköztekin, Tarlk; Hanalioǧlu, Şahin; Işlkay, İlkay; Berker, Mustafa Enabling personalization of a robotic surgery procedure via a surgery training simulator Journal Article Robotica, 41 (3), pp. 869 – 884, 2023. @article{Dede2023869, title = {Enabling personalization of a robotic surgery procedure via a surgery training simulator}, author = {Mehmet İsmet Can Dede and Tarlk Büyüköztekin and Şahin Hanalioǧlu and İlkay Işlkay and Mustafa Berker}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148013607&doi=10.1017%2fS0263574722001023&partnerID=40&md5=2ca0aadba08af765e6eb072301e16eaa}, doi = {10.1017/S0263574722001023}, year = {2023}, date = {2023-01-01}, journal = {Robotica}, volume = {41}, number = {3}, pages = {869 – 884}, abstract = {Although robotic or robot-assisted surgery has been increasingly used by many surgical disciplines, its application in cranial or skull base surgery is still in its infancy. Master-slave teleoperation setting of these robotic systems enables these surgical procedures to be replicated in a virtual reality environment for surgeon training purposes. A variety of teleoperation modes were previously determined with respect to the motion capability of the surgeon's hand that wears the ring as the surgeon handles a surgical tool inside the surgical workspace. In this surgery training simulator developed for a robot-assisted endoscopic skull base surgery, a new strategy is developed to identify the preferred motion axes of the surgeon. This simulator is designed specifically for tuning the teleoperation system for each surgeon via the identification. This tuning capability brings flexibility to adjust the system operation with respect to the motion characteristics of the surgeon. © The Author(s), 2022. Published by Cambridge University Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Although robotic or robot-assisted surgery has been increasingly used by many surgical disciplines, its application in cranial or skull base surgery is still in its infancy. Master-slave teleoperation setting of these robotic systems enables these surgical procedures to be replicated in a virtual reality environment for surgeon training purposes. A variety of teleoperation modes were previously determined with respect to the motion capability of the surgeon's hand that wears the ring as the surgeon handles a surgical tool inside the surgical workspace. In this surgery training simulator developed for a robot-assisted endoscopic skull base surgery, a new strategy is developed to identify the preferred motion axes of the surgeon. This simulator is designed specifically for tuning the teleoperation system for each surgeon via the identification. This tuning capability brings flexibility to adjust the system operation with respect to the motion characteristics of the surgeon. © The Author(s), 2022. Published by Cambridge University Press. |
Demirel, Murat; Kiper, Gökhan; Carbone, Giuseppe; Ceccarelli, Marco Design of a novel hybrid cable-constrained parallel leg mechanism for biped walking machines Journal Article Robotica, 41 (6), pp. 1778 – 1793, 2023, (All Open Access, Green Open Access). @article{Demirel20231778, title = {Design of a novel hybrid cable-constrained parallel leg mechanism for biped walking machines}, author = {Murat Demirel and Gökhan Kiper and Giuseppe Carbone and Marco Ceccarelli}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182028851&doi=10.1017%2fS0263574723000140&partnerID=40&md5=60745b93d1c9dbaf0d172fdcc365338f}, doi = {10.1017/S0263574723000140}, year = {2023}, date = {2023-01-01}, journal = {Robotica}, volume = {41}, number = {6}, pages = {1778 – 1793}, abstract = {In this paper, a novel cable-constrained parallel mechanism is presented as a lightweight, low-cost leg mechanism design for walking machines to be used on flat surfaces. The proposed leg mechanism has three translational degrees of freedom. It is based on two specific hybrid kinematic topologies being herewith proposed. The paper reports the kinematic analysis formulation and a position performance evaluation to confirm the main characteristics of the proposed solutions. A 3D CAD model and simulations are carried out to demonstrate the feasibility of the proposed design for performing a human-like gait trajectory. A prototype has been built, and preliminarily tests have been conducted to confirm the motion capabilities of the proposed mechanism design. Then a second, enhanced prototype has been designed and built. An experimental validation is carried out for tracking a planar walking trajectory with the built prototypes by using a real-time PCI controller. Results are presented to validate the operation characteristics of the proposed mechanism and to prove its feasibility for legged walking machines. © The Author(s), 2023.}, note = {All Open Access, Green Open Access}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this paper, a novel cable-constrained parallel mechanism is presented as a lightweight, low-cost leg mechanism design for walking machines to be used on flat surfaces. The proposed leg mechanism has three translational degrees of freedom. It is based on two specific hybrid kinematic topologies being herewith proposed. The paper reports the kinematic analysis formulation and a position performance evaluation to confirm the main characteristics of the proposed solutions. A 3D CAD model and simulations are carried out to demonstrate the feasibility of the proposed design for performing a human-like gait trajectory. A prototype has been built, and preliminarily tests have been conducted to confirm the motion capabilities of the proposed mechanism design. Then a second, enhanced prototype has been designed and built. An experimental validation is carried out for tracking a planar walking trajectory with the built prototypes by using a real-time PCI controller. Results are presented to validate the operation characteristics of the proposed mechanism and to prove its feasibility for legged walking machines. © The Author(s), 2023. |
Ayit, Orhan; Dede, Mehmet İsmet Can A study on a computationally efficient controller design for a surgical robotic system Journal Article International Journal of Dynamics and Control, 11 (6), pp. 3176 – 3187, 2023. @article{Ayit20233176, title = {A study on a computationally efficient controller design for a surgical robotic system}, author = {Orhan Ayit and Mehmet İsmet Can Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153031240&doi=10.1007%2fs40435-023-01164-y&partnerID=40&md5=cdb5797de4d939164cc1a564579d738c}, doi = {10.1007/s40435-023-01164-y}, year = {2023}, date = {2023-01-01}, journal = {International Journal of Dynamics and Control}, volume = {11}, number = {6}, pages = {3176 – 3187}, abstract = {The control algorithms of the surgical robotic system using the robot’s dynamics produce a relatively high computational load on the processor. This paper develops a computationally efficient computed torque controller by using a simplified dynamic modeling method and implemented in a novel surgical robot experimentally. In addition, an independent joint controller is designed and implemented to compare the results of the computed torque controller. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The control algorithms of the surgical robotic system using the robot’s dynamics produce a relatively high computational load on the processor. This paper develops a computationally efficient computed torque controller by using a simplified dynamic modeling method and implemented in a novel surgical robot experimentally. In addition, an independent joint controller is designed and implemented to compare the results of the computed torque controller. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
2022 |
Kiper, Gokhan; Korkmaz, Koray; Gur, Sebnem; Uncu, Mujde Yar; Maden, Feray; Akgun, Yenal; Karagoz, Cevahir Loop based classification of planar scissor linkages Journal Article SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 47 (1), 2022. @article{WOS:000736787800002, title = {Loop based classification of planar scissor linkages}, author = {Gokhan Kiper and Koray Korkmaz and Sebnem Gur and Mujde Yar Uncu and Feray Maden and Yenal Akgun and Cevahir Karagoz}, doi = {10.1007/s12046-021-01783-1}, year = {2022}, date = {2022-03-01}, journal = {SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES}, volume = {47}, number = {1}, abstract = {Scissor linkages have been used for several applications since ancient Greeks and Romans. In addition to simple scissor linkages with straight rods, linkages with angulated elements have been introduced in the last decades. In the related literature, two methods have been used to design scissor linkages, one of which is based on scissor elements, and the other is based on assembling loops. This study presents a systematic classification of scissor linkages as assemblies of rhombus, kite, dart, parallelogram and anti-parallelogram loops using frieze patterns and long-short diagonal connections. After the loops are replicated along a curve as a pattern, the linkages are obtained by selection of proper common link sections for adjacent loops. The resulting linkages are analyzed for their motions and they are classified as realizing scaling deployable, angular deployable or transformable motion. Some of the linkages obtained are novel. Totally 10 scalable deployable, 1 angular deployable and 8 transformable scissor linkages are listed. Designers in architecture and engineering can use this list of linkages as a library of scissor linkage topologies.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Scissor linkages have been used for several applications since ancient Greeks and Romans. In addition to simple scissor linkages with straight rods, linkages with angulated elements have been introduced in the last decades. In the related literature, two methods have been used to design scissor linkages, one of which is based on scissor elements, and the other is based on assembling loops. This study presents a systematic classification of scissor linkages as assemblies of rhombus, kite, dart, parallelogram and anti-parallelogram loops using frieze patterns and long-short diagonal connections. After the loops are replicated along a curve as a pattern, the linkages are obtained by selection of proper common link sections for adjacent loops. The resulting linkages are analyzed for their motions and they are classified as realizing scaling deployable, angular deployable or transformable motion. Some of the linkages obtained are novel. Totally 10 scalable deployable, 1 angular deployable and 8 transformable scissor linkages are listed. Designers in architecture and engineering can use this list of linkages as a library of scissor linkage topologies. |
Maral, M O; Korkmaz, K; Kiper, G A NOVEL DESIGN METHOD OF DEPLOYABLE SEMI-REGULAR TESSELLATED SURFACES WITH PLANO-SPHERICAL UNITS Journal Article Journal of the International Association for Shell and Spatial Structures, 63 (3), pp. 189-202, 2022. @article{Maral2022189, title = {A NOVEL DESIGN METHOD OF DEPLOYABLE SEMI-REGULAR TESSELLATED SURFACES WITH PLANO-SPHERICAL UNITS}, author = {M O Maral and K Korkmaz and G Kiper}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141332813&doi=10.20898%2fj.iass.2022.005&partnerID=40&md5=00e88391f1aab60b0932e2d29bdd5db2}, doi = {10.20898/j.iass.2022.005}, year = {2022}, date = {2022-01-01}, journal = {Journal of the International Association for Shell and Spatial Structures}, volume = {63}, number = {3}, pages = {189-202}, abstract = {The design of movable systems gives an opportunity to create transformable designs which respond to the environmental, functional, cultural, and aesthetical needs of today's architecture. This paper proposes a method for designing a family of deployable structures which can be applied to semi-regular tessellated planar surfaces such as roofs, walls, and shading devices. The generated modular approach and adaptability provides a wide usage area and various combinations for these designs. The regular convex polygon modules are designed as a network of the triangular units. The triangular unit is designed using Bennett's overconstrained plano-spherical linkage topology. The polygonal modules are assembled to each other in one-uniform semi-regular tessellations. The assembly of adjacent regular convex polygons in each tessellation is examined to find a proper solution for no collision during deployment and to properly fit a surface without any gaps or overlaps in the deployed position. The assembly method for creating 1-DoF deployable surfaces and mobility calculations for a unit, the polygonal modules, and the assemblies are computed, and motion studies are demonstrated with CAD models and exemplified for a square module for motion tests in a prototype. © 2022 by Mesude Oraj Maral, Koray Korkmaz and Gökhan Kiper.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The design of movable systems gives an opportunity to create transformable designs which respond to the environmental, functional, cultural, and aesthetical needs of today's architecture. This paper proposes a method for designing a family of deployable structures which can be applied to semi-regular tessellated planar surfaces such as roofs, walls, and shading devices. The generated modular approach and adaptability provides a wide usage area and various combinations for these designs. The regular convex polygon modules are designed as a network of the triangular units. The triangular unit is designed using Bennett's overconstrained plano-spherical linkage topology. The polygonal modules are assembled to each other in one-uniform semi-regular tessellations. The assembly of adjacent regular convex polygons in each tessellation is examined to find a proper solution for no collision during deployment and to properly fit a surface without any gaps or overlaps in the deployed position. The assembly method for creating 1-DoF deployable surfaces and mobility calculations for a unit, the polygonal modules, and the assemblies are computed, and motion studies are demonstrated with CAD models and exemplified for a square module for motion tests in a prototype. © 2022 by Mesude Oraj Maral, Koray Korkmaz and Gökhan Kiper. |
Özen, G; Kiper, G; Korkmaz, K DESIGN OF DEMOUNTABLE RECIPROCAL FRAMES WITH NEW GEOMETRIC PROPERTIES Journal Article Journal of the International Association for Shell and Spatial Structures, 63 (3), pp. 203-212, 2022. @article{Özen2022203, title = {DESIGN OF DEMOUNTABLE RECIPROCAL FRAMES WITH NEW GEOMETRIC PROPERTIES}, author = {G Özen and G Kiper and K Korkmaz}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141307917&doi=10.20898%2fj.iass.2022.013&partnerID=40&md5=a0f27a35c8299c76151cffcb848aa678}, doi = {10.20898/j.iass.2022.013}, year = {2022}, date = {2022-01-01}, journal = {Journal of the International Association for Shell and Spatial Structures}, volume = {63}, number = {3}, pages = {203-212}, abstract = {This study aims to develop missing geometric knowledge for demountable reciprocal frames (RF). While designing a demountable RF, one should know the initial, in-process and final form of the RF. These processes require some specific geometric knowledge. There are some deficiencies about geometric properties in the previous studies about demountable RFs. In this study, the positions and the orientations of the nexors are found by using the Denavit-Hartenberg parameters. This information gives where the joints are placed, how they are oriented and take position according to one another. Besides, the influence of engagement length on the fan height and the base edge are analyzed. Thereby one will be able to find out how much space the RF covers with the known base edge. With the geometric knowledge obtained from this study, demountable RFs having different engagement lengths can be produced with the same nexors. Copyright © 2022 by Gülçin Özen, Gökhan Kiper and Koray Korkmaz.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This study aims to develop missing geometric knowledge for demountable reciprocal frames (RF). While designing a demountable RF, one should know the initial, in-process and final form of the RF. These processes require some specific geometric knowledge. There are some deficiencies about geometric properties in the previous studies about demountable RFs. In this study, the positions and the orientations of the nexors are found by using the Denavit-Hartenberg parameters. This information gives where the joints are placed, how they are oriented and take position according to one another. Besides, the influence of engagement length on the fan height and the base edge are analyzed. Thereby one will be able to find out how much space the RF covers with the known base edge. With the geometric knowledge obtained from this study, demountable RFs having different engagement lengths can be produced with the same nexors. Copyright © 2022 by Gülçin Özen, Gökhan Kiper and Koray Korkmaz. |
Boztaş, S; Kiper, G Enumeration and instantaneous mobility analysis of a class of 3-UPU parallel manipulators with equilateral triangular platforms Journal Article Robotica, 40 (5), pp. 1538-1569, 2022. @article{Boztaş20221538, title = {Enumeration and instantaneous mobility analysis of a class of 3-UPU parallel manipulators with equilateral triangular platforms}, author = {S Boztaş and G Kiper}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117189706&doi=10.1017%2fS0263574721001259&partnerID=40&md5=1f5d59f04a34765e2bd8e7c9809d9606}, doi = {10.1017/S0263574721001259}, year = {2022}, date = {2022-01-01}, journal = {Robotica}, volume = {40}, number = {5}, pages = {1538-1569}, abstract = {In this study, several joint axis orientations on equilateral platforms and the limbs of 3-UPU parallel manipulators (PMs) are examined. The generated joint layouts for the platforms were matched with each other to generate and enumerate manipulator architectures based on certain assumptions. The structures of thus obtained manipulators are examined and limb types were determined. These limb types were analyzed using screw theory. The instantaneous mobility of the manipulators and the motion characteristics of the moving platforms are tabulated. The finite mobility analysis of one of the manipulators is performed using a software package as an example. Among several different 3-UPU PM architectures, 118 novel 3-UPU PMs with non-parasitic 3-degrees-of-freedom are significantly important. The classified 3-UPU PMs with determined motion characteristics can be used by researchers as a design alternative for their specific design task. ©}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this study, several joint axis orientations on equilateral platforms and the limbs of 3-UPU parallel manipulators (PMs) are examined. The generated joint layouts for the platforms were matched with each other to generate and enumerate manipulator architectures based on certain assumptions. The structures of thus obtained manipulators are examined and limb types were determined. These limb types were analyzed using screw theory. The instantaneous mobility of the manipulators and the motion characteristics of the moving platforms are tabulated. The finite mobility analysis of one of the manipulators is performed using a software package as an example. Among several different 3-UPU PM architectures, 118 novel 3-UPU PMs with non-parasitic 3-degrees-of-freedom are significantly important. The classified 3-UPU PMs with determined motion characteristics can be used by researchers as a design alternative for their specific design task. © |
Şahin, O N; Dede, M İ C Model-based detection and isolation of the wheel slippage and actuator faults of a holonomic mobile robot Journal Article Industrial Robot, 49 (6), pp. 1202-1217, 2022. @article{Şahin20221202, title = {Model-based detection and isolation of the wheel slippage and actuator faults of a holonomic mobile robot}, author = {O N Şahin and M İ C Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130240953&doi=10.1108%2fIR-01-2022-0001&partnerID=40&md5=bfe89d019e1f0a22ac5484fcb26a7655}, doi = {10.1108/IR-01-2022-0001}, year = {2022}, date = {2022-01-01}, journal = {Industrial Robot}, volume = {49}, number = {6}, pages = {1202-1217}, abstract = {Purpose: Mobile robots may perform very critical tasks under difficult operating conditions. Faults encountered during their tasks may cause the task to be interrupted or failed completely. In the active fault tolerant control methods, it is very important not only to detect the faults that occur in the robot, but also to isolate these faults to develop a fault recovery strategy that is suitable for that specific type of fault. This study aims to develop a model-based fault detection and isolation method for wheel slippage and motor performance degradation that may occur in wheeled mobile robots. Design/methodology/approach: In the proposed method, wheel speeds can be estimated via the dynamic model of the mobile robot, which includes a friction model between the wheel and the ground. Four residual signals are obtained from the differences between the estimated states and the measured states of the mobile robot. Mobile robot’s faults are detected by using these signals. Also, two different residual signals are generated from the calculation of the traction forces with two different procedures. These six residual signals are then used to isolate possible wheel slippage and performance degradation in a motor. Findings: The proposed method for diagnosing wheel slip and performance degradation in motors are tested by moving the robot in various directions. According to the data obtained from the test results, a logic table is created to isolate these two faults from each other. Thanks to the created logic table, slippage in any wheel and performance degradation in any motor can be detected and isolated. Originality/value: Two different recovery strategies are needed to recover temporary wheel slippage and permanent motor faults. Therefore, it is important to isolate these two faults that create similar symptoms in robot’s general movement. Thanks to the method proposed in this study, it is not only possible to isolate the slipping wheel with respect to the non-slipping wheels or to isolate the faulty motor from the non-faulty ones, but also to isolate these two different fault types from each other. © 2022, Emerald Publishing Limited.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Purpose: Mobile robots may perform very critical tasks under difficult operating conditions. Faults encountered during their tasks may cause the task to be interrupted or failed completely. In the active fault tolerant control methods, it is very important not only to detect the faults that occur in the robot, but also to isolate these faults to develop a fault recovery strategy that is suitable for that specific type of fault. This study aims to develop a model-based fault detection and isolation method for wheel slippage and motor performance degradation that may occur in wheeled mobile robots. Design/methodology/approach: In the proposed method, wheel speeds can be estimated via the dynamic model of the mobile robot, which includes a friction model between the wheel and the ground. Four residual signals are obtained from the differences between the estimated states and the measured states of the mobile robot. Mobile robot’s faults are detected by using these signals. Also, two different residual signals are generated from the calculation of the traction forces with two different procedures. These six residual signals are then used to isolate possible wheel slippage and performance degradation in a motor. Findings: The proposed method for diagnosing wheel slip and performance degradation in motors are tested by moving the robot in various directions. According to the data obtained from the test results, a logic table is created to isolate these two faults from each other. Thanks to the created logic table, slippage in any wheel and performance degradation in any motor can be detected and isolated. Originality/value: Two different recovery strategies are needed to recover temporary wheel slippage and permanent motor faults. Therefore, it is important to isolate these two faults that create similar symptoms in robot’s general movement. Thanks to the method proposed in this study, it is not only possible to isolate the slipping wheel with respect to the non-slipping wheels or to isolate the faulty motor from the non-faulty ones, but also to isolate these two different fault types from each other. © 2022, Emerald Publishing Limited. |
Kanlk, M; Ayit, O; Dede, M I C; Tatlicioglu, E Robotica, 40 (7), pp. 2112-2127, 2022. @article{Kanlk20222112, title = {Toward safe and high-performance human-robot collaboration via implementation of redundancy and understanding the effects of admittance term parameters}, author = {M Kanlk and O Ayit and M I C Dede and E Tatlicioglu}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119673140&doi=10.1017%2fS0263574721001569&partnerID=40&md5=97f95f7fba03b5aece75e8580f8a1977}, doi = {10.1017/S0263574721001569}, year = {2022}, date = {2022-01-01}, journal = {Robotica}, volume = {40}, number = {7}, pages = {2112-2127}, abstract = {Today, demandsin industrial manufacturing mandate humans to work with large-scale industrial robots, and this collaboration may result in dangerous conditions for humans. To deal with this situation, this work proposes a novel approach for redundant large-scale industrial robots. In the proposed approach, an admittance controller is designed to regulate the interaction between the end effector of the robot and the human. Additionally, an obstacle avoidance algorithm is implemented in the null space of the robot to prevent any possible unexpected collision between the human and the links of the robot. After safety performance of this approach is verified via simulations and experimental studies, the effect of the parameters of the admittance controller on the performance of collaboration in terms of both accuracy and total human effort is investigated. This investigation is carried out via 8 experiments by the participation of 10 test subjects in which the effect of different admittance controller parameters such as mass and damper are compared. As a result of this investigation, tuning insights for such parameters are revealed. © 2021 The Author(s). Published by Cambridge University Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Today, demandsin industrial manufacturing mandate humans to work with large-scale industrial robots, and this collaboration may result in dangerous conditions for humans. To deal with this situation, this work proposes a novel approach for redundant large-scale industrial robots. In the proposed approach, an admittance controller is designed to regulate the interaction between the end effector of the robot and the human. Additionally, an obstacle avoidance algorithm is implemented in the null space of the robot to prevent any possible unexpected collision between the human and the links of the robot. After safety performance of this approach is verified via simulations and experimental studies, the effect of the parameters of the admittance controller on the performance of collaboration in terms of both accuracy and total human effort is investigated. This investigation is carried out via 8 experiments by the participation of 10 test subjects in which the effect of different admittance controller parameters such as mass and damper are compared. As a result of this investigation, tuning insights for such parameters are revealed. © 2021 The Author(s). Published by Cambridge University Press. |
Maaroof, O W; Dede, M İ C; Aydin, L A Robot Arm Design Optimization Method by Using a Kinematic Redundancy Resolution Technique Journal Article Robotics, 11 (1), 2022. @article{Maaroof2022, title = {A Robot Arm Design Optimization Method by Using a Kinematic Redundancy Resolution Technique}, author = {O W Maaroof and M İ C Dede and L Aydin}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122955998&doi=10.3390%2frobotics11010001&partnerID=40&md5=88885649cc03fbdcd72af784eae80615}, doi = {10.3390/robotics11010001}, year = {2022}, date = {2022-01-01}, journal = {Robotics}, volume = {11}, number = {1}, abstract = {Redundancy resolution techniques have been widely used for the control of kinematically redundant robots. In this work, one of the redundancy resolution techniques is employed in the mechanical design optimization of a robot arm. Although the robot arm is non-redundant, the proposed method modifies robot arm kinematics by adding virtual joints to make the robot arm kinematically redundant. In the proposed method, a suitable objective function is selected to optimize the robot arm’s kinematic parameters by enhancing one or more performance indices. Then the robot arm’s end-effector is fixed at critical positions while the redundancy resolution algorithm moves its joints including the virtual joints because of the self-motion of a redundant robot. Hence, the optimum values of the virtual joints are determined, and the design of the robot arm is modified accordingly. An advantage of this method is the visualization of the changes in the manipulator’s structure during the optimization process. In this work, as a case study, a passive robotic arm that is used in a surgical robot system is considered and the task is defined as the determination of the optimum base location and the first link’s length. The results indicate the effectiveness of the proposed method. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Redundancy resolution techniques have been widely used for the control of kinematically redundant robots. In this work, one of the redundancy resolution techniques is employed in the mechanical design optimization of a robot arm. Although the robot arm is non-redundant, the proposed method modifies robot arm kinematics by adding virtual joints to make the robot arm kinematically redundant. In the proposed method, a suitable objective function is selected to optimize the robot arm’s kinematic parameters by enhancing one or more performance indices. Then the robot arm’s end-effector is fixed at critical positions while the redundancy resolution algorithm moves its joints including the virtual joints because of the self-motion of a redundant robot. Hence, the optimum values of the virtual joints are determined, and the design of the robot arm is modified accordingly. An advantage of this method is the visualization of the changes in the manipulator’s structure during the optimization process. In this work, as a case study, a passive robotic arm that is used in a surgical robot system is considered and the task is defined as the determination of the optimum base location and the first link’s length. The results indicate the effectiveness of the proposed method. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
2021 |
Kumtepe, Elvan Doğan; Kiper, Gökhan Design, prototyping and tests of a rollable ramp for temporary use Journal Article Sadhana - Academy Proceedings in Engineering Sciences, 46 (4), 2021. @article{DoğanKumtepe2021, title = {Design, prototyping and tests of a rollable ramp for temporary use}, author = {Elvan Doğan Kumtepe and Gökhan Kiper}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118582555&doi=10.1007%2fs12046-021-01756-4&partnerID=40&md5=17fef753eb6120e9431bab50f4ce0492}, doi = {10.1007/s12046-021-01756-4}, year = {2021}, date = {2021-01-01}, journal = {Sadhana - Academy Proceedings in Engineering Sciences}, volume = {46}, number = {4}, abstract = {Portable ramps, used generally by wheelchair users, offer temporary solution to increase accessibility and mobility. Preferably these ramps should be compact and lightweight for ease of handling and storage. Different types of portable ramps in the market that are used by wheelchair users are generally made of aluminum and require several improvements, especially in terms of lightweight and compactness. Based on wheelchair users’ inclinations a compact and lightweight rollable ramp is designed in this study. A parametric model of the links of the ramp are derived and the rolled geometry is optimized using convex hull and smallest enclosing circle algorithms. The side bars of the links are designed and manufactured from aluminum and the load-bearing panels are manufactured from sandwich composite structures with honeycomb core. Strength calculations are performed analytically and also with finite-element analysis. After the design is finalized, a prototype is manufactured. The designed ramp is 15.4% more compact and has 18.9% less weight compared to the best rival product available in the market. Load tests and functional tests are performed with voluntary wheelchair users. Several positive feedbacks are received from the participants about the ramp being practical, easy to use and store, lightweight, advantage of the anti-slip surface. © 2021, Indian Academy of Sciences.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Portable ramps, used generally by wheelchair users, offer temporary solution to increase accessibility and mobility. Preferably these ramps should be compact and lightweight for ease of handling and storage. Different types of portable ramps in the market that are used by wheelchair users are generally made of aluminum and require several improvements, especially in terms of lightweight and compactness. Based on wheelchair users’ inclinations a compact and lightweight rollable ramp is designed in this study. A parametric model of the links of the ramp are derived and the rolled geometry is optimized using convex hull and smallest enclosing circle algorithms. The side bars of the links are designed and manufactured from aluminum and the load-bearing panels are manufactured from sandwich composite structures with honeycomb core. Strength calculations are performed analytically and also with finite-element analysis. After the design is finalized, a prototype is manufactured. The designed ramp is 15.4% more compact and has 18.9% less weight compared to the best rival product available in the market. Load tests and functional tests are performed with voluntary wheelchair users. Several positive feedbacks are received from the participants about the ramp being practical, easy to use and store, lightweight, advantage of the anti-slip surface. © 2021, Indian Academy of Sciences. |
Şahin, O N; Dede, M İ C Investigation of longitudinal friction characteristics of an omnidirectional wheel via LuGre model Journal Article Robotica, 39 (9), pp. 1654-1673, 2021. @article{Şahin20211654, title = {Investigation of longitudinal friction characteristics of an omnidirectional wheel via LuGre model}, author = {O N Şahin and M İ C Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100396480&doi=10.1017%2fS0263574720001423&partnerID=40&md5=87b564f58915fb537015ba9bc579f540}, doi = {10.1017/S0263574720001423}, year = {2021}, date = {2021-01-01}, journal = {Robotica}, volume = {39}, number = {9}, pages = {1654-1673}, abstract = {In recent years, omnidirectional wheels have found more applications in the design of automated guided vehicles (AGV). In this work, LuGre friction model is used for an omnidirectional wheel. A test setup that includes a single omnidirectional wheel is designed and constructed to identify the model parameters. With the help of the constructed test setup, the longitudinal friction characteristic of the omnidirectional wheel is obtained, and the model is verified via validation tests. In addition, for the first time, the effect of lateral frictional force on longitudinal motion is examined for an omnidirectional wheel through experiments. © 2021 Cambridge University Press. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In recent years, omnidirectional wheels have found more applications in the design of automated guided vehicles (AGV). In this work, LuGre friction model is used for an omnidirectional wheel. A test setup that includes a single omnidirectional wheel is designed and constructed to identify the model parameters. With the help of the constructed test setup, the longitudinal friction characteristic of the omnidirectional wheel is obtained, and the model is verified via validation tests. In addition, for the first time, the effect of lateral frictional force on longitudinal motion is examined for an omnidirectional wheel through experiments. © 2021 Cambridge University Press. All rights reserved. |
Dede, M I C; Kiper, G; Ayav, T; Ozdemirel, B; Tatlıcıoglu, E; Hanalioglu, S; Işıkay, I; Berker, M Human–robot interfaces of the neuroboscope: A minimally invasive endoscopic pituitary tumor surgery robotic assistance system Journal Article Journal of Medical Devices, Transactions of the ASME, 15 (1), 2021. @article{Dede2021, title = {Human–robot interfaces of the neuroboscope: A minimally invasive endoscopic pituitary tumor surgery robotic assistance system}, author = {M I C Dede and G Kiper and T Ayav and B Ozdemirel and E Tatlıcıoglu and S Hanalioglu and I Işıkay and M Berker}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107958529&doi=10.1115%2f1.4049394&partnerID=40&md5=975e1687eb1d91a0fe45def8948da24f}, doi = {10.1115/1.4049394}, year = {2021}, date = {2021-01-01}, journal = {Journal of Medical Devices, Transactions of the ASME}, volume = {15}, number = {1}, abstract = {Endoscopic endonasal surgery is a commonly practiced minimally invasive neurosurgical operation for the treatment of a wide range of skull base pathologies including pituitary tumors. A common shortcoming of this surgery is the necessity of a third hand when the endoscope has to be handled to allow active use of both hands of the main surgeon. The robot surgery assistant NeuRoboScope system has been developed to take over the endoscope from the main surgeon’s hand while providing the surgeon with the necessary means of controlling the location and direction of the endoscope. One of the main novelties of the NeuRoboScope system is its human–robot interface designs which regulate and facilitate the interaction between the surgeon and the robot assistant. The human–robot interaction design of the NeuRoboScope system is investigated in two domains: direct physical interaction (DPI) and master–slave teleoperation (MST). The user study indicating the learning curve and ease of use of the MST is given and this paper is concluded via providing the reader with an outlook of possible new human–robot interfaces for the robot assisted surgery systems. Copyright VC 2021 by ASME}, keywords = {}, pubstate = {published}, tppubtype = {article} } Endoscopic endonasal surgery is a commonly practiced minimally invasive neurosurgical operation for the treatment of a wide range of skull base pathologies including pituitary tumors. A common shortcoming of this surgery is the necessity of a third hand when the endoscope has to be handled to allow active use of both hands of the main surgeon. The robot surgery assistant NeuRoboScope system has been developed to take over the endoscope from the main surgeon’s hand while providing the surgeon with the necessary means of controlling the location and direction of the endoscope. One of the main novelties of the NeuRoboScope system is its human–robot interface designs which regulate and facilitate the interaction between the surgeon and the robot assistant. The human–robot interaction design of the NeuRoboScope system is investigated in two domains: direct physical interaction (DPI) and master–slave teleoperation (MST). The user study indicating the learning curve and ease of use of the MST is given and this paper is concluded via providing the reader with an outlook of possible new human–robot interfaces for the robot assisted surgery systems. Copyright VC 2021 by ASME |
Görgülü, I; Dede, M I C; Carbone, G Experimental structural stiffness analysis of a surgical haptic master device manipulator Journal Article Journal of Medical Devices, Transactions of the ASME, 15 (1), 2021. @article{Görgülü2021, title = {Experimental structural stiffness analysis of a surgical haptic master device manipulator}, author = {I Görgülü and M I C Dede and G Carbone}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104310305&doi=10.1115%2f1.4049515&partnerID=40&md5=048e166dbd6c463f1f09a4381bcbab93}, doi = {10.1115/1.4049515}, year = {2021}, date = {2021-01-01}, journal = {Journal of Medical Devices, Transactions of the ASME}, volume = {15}, number = {1}, abstract = {This paper deals with haptic devices for master-slave telesurgical applications. Namely, a stiffness model fitting methodology and its fine-tuning are proposed based on experimental results. In particular, the proposed procedure is based on virtual joint structural stiffness modeling to be applied in time-efficient compliance compensation strategies. A specific case study is discussed by referring to the HISS haptic device that has been developed and built at Izmir Institute of Technology. Two different experimental setups are designed for stiffness evaluation tests. Experimental results are discussed to demonstrate their implementation in the proposed methodology for the fine-tuning of stiffness model. © 2021 by ASME}, keywords = {}, pubstate = {published}, tppubtype = {article} } This paper deals with haptic devices for master-slave telesurgical applications. Namely, a stiffness model fitting methodology and its fine-tuning are proposed based on experimental results. In particular, the proposed procedure is based on virtual joint structural stiffness modeling to be applied in time-efficient compliance compensation strategies. A specific case study is discussed by referring to the HISS haptic device that has been developed and built at Izmir Institute of Technology. Two different experimental setups are designed for stiffness evaluation tests. Experimental results are discussed to demonstrate their implementation in the proposed methodology for the fine-tuning of stiffness model. © 2021 by ASME |
Uzunoǧlu, E; Tatlicioǧlu, E; Dede, M İ C A Multi-Priority Controller for Industrial Macro-Micro Manipulation Journal Article Robotica, 39 (2), pp. 217-232, 2021. @article{Uzunoǧlu2021217, title = {A Multi-Priority Controller for Industrial Macro-Micro Manipulation}, author = {E Uzunoǧlu and E Tatlicioǧlu and M İ C Dede}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085752198&doi=10.1017%2fS0263574720000338&partnerID=40&md5=95fe3fbdfd64d096223263ac48141bbb}, doi = {10.1017/S0263574720000338}, year = {2021}, date = {2021-01-01}, journal = {Robotica}, volume = {39}, number = {2}, pages = {217-232}, abstract = {In this study, a control algorithm is proposed and evaluated for a special type of kinematically redundant manipulator. This manipulator is comprised of two mechanisms, macro and micro mechanisms, with distinct acceleration and work space characteristics. A control algorithm is devised to minimize the task completion duration and the overall actuator effort with respect to the conventional manipulator. A general framework multi-priority controller for macro-micro manipulators is introduced by utilizing virtual dynamics, which is introduced in null-space projection to achieve secondary tasks. The proposed controller is evaluated on a simulation model based on a previously constructed macro-micro manipulator for planar laser cutting. Task completion duration and the total actuator effort are investigated and the results are compared. Copyright © The Author(s), 2020. Published by Cambridge University Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this study, a control algorithm is proposed and evaluated for a special type of kinematically redundant manipulator. This manipulator is comprised of two mechanisms, macro and micro mechanisms, with distinct acceleration and work space characteristics. A control algorithm is devised to minimize the task completion duration and the overall actuator effort with respect to the conventional manipulator. A general framework multi-priority controller for macro-micro manipulators is introduced by utilizing virtual dynamics, which is introduced in null-space projection to achieve secondary tasks. The proposed controller is evaluated on a simulation model based on a previously constructed macro-micro manipulator for planar laser cutting. Task completion duration and the total actuator effort are investigated and the results are compared. Copyright © The Author(s), 2020. Published by Cambridge University Press. |
2020 |
Yasir, Abdullah; Kiper, Gokhan; Dede, Can M I Kinematic design of a non-parasitic 2R1T parallel mechanism with remote center of motion to be used in minimally invasive surgery applications Journal Article MECHANISM AND MACHINE THEORY, 153 , 2020, ISSN: 0094-114X. @article{ISI:000566908100008, title = {Kinematic design of a non-parasitic 2R1T parallel mechanism with remote center of motion to be used in minimally invasive surgery applications}, author = {Abdullah Yasir and Gokhan Kiper and Can M I Dede}, doi = {10.1016/j.mechmachtheory.2020.104013}, issn = {0094-114X}, year = {2020}, date = {2020-11-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {153}, abstract = {In minimally invasive surgery applications, the use of robotic manipulators is becoming more and more common to enhance the precision of the operations and post-operative processes. Such operations are often performed through an incision port (a pivot point) on the patient's body. Since the end-effector (the handled surgical tool) move about the pivot point, the manipulator has to move about a remote center of motion. In this study, a 3-degrees-of-freedom parallel mechanism with 2R1T (R: rotation, T: translation) remote center of motion capability is presented for minimally invasive surgery applications. First, its kinematic structure is introduced. Then, its kinematic analysis is carried out by using a simplified kinematic model which consists of three intersecting planes. Then the dimensional design is done for the desired workspace and a simulation test is carried out to verify the kinematic formulations. Finally, the prototype of the final design is presented. (c) 2020 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In minimally invasive surgery applications, the use of robotic manipulators is becoming more and more common to enhance the precision of the operations and post-operative processes. Such operations are often performed through an incision port (a pivot point) on the patient's body. Since the end-effector (the handled surgical tool) move about the pivot point, the manipulator has to move about a remote center of motion. In this study, a 3-degrees-of-freedom parallel mechanism with 2R1T (R: rotation, T: translation) remote center of motion capability is presented for minimally invasive surgery applications. First, its kinematic structure is introduced. Then, its kinematic analysis is carried out by using a simplified kinematic model which consists of three intersecting planes. Then the dimensional design is done for the desired workspace and a simulation test is carried out to verify the kinematic formulations. Finally, the prototype of the final design is presented. (c) 2020 Elsevier Ltd. All rights reserved. |
Gorgulu, Ibrahimcan; Carbone, Giuseppe; Dede, Can M I Time efficient stiffness model computation for a parallel haptic mechanism via the virtual joint method Journal Article MECHANISM AND MACHINE THEORY, 143 , 2020, ISSN: 0094-114X. @article{ISI:000502050800019, title = {Time efficient stiffness model computation for a parallel haptic mechanism via the virtual joint method}, author = {Ibrahimcan Gorgulu and Giuseppe Carbone and Can M I Dede}, doi = {10.1016/j.mechmachtheory.2019.103614}, issn = {0094-114X}, year = {2020}, date = {2020-01-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {143}, abstract = {Haptic devices are used for displaying a range of mechanical impedance values to the user. This impedance is regulated by a real-time control loop depending on the position information of the end-effector, which is usually acquired indirectly by using forward kinematics equations. Nevertheless, the kinematic model is insufficient to obtain accurate values if there are non-negligible compliant displacements. This gives a strong motivation for implementing a real-time stiffness model in the haptic control loop for improving its accuracy. Additionally, stiffness performance indices can be used at the design stage for enhancing the haptic devices impedance range within optimal design procedures. Fast solutions of a stiffness model are required for a real-time control as well as for decreasing the optimization time during a design process with a trade-off between accuracy and computational costs. In this study, we propose a computation time-efficient stiffness analysis of a parallel haptic device mechanism. The accuracy and computational costs of the proposed model are calculated and compared with a model that is obtained via a finite element method to demonstrate the effectiveness of the proposed approach with the desired real-time and accuracy performance. (C) 2019 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Haptic devices are used for displaying a range of mechanical impedance values to the user. This impedance is regulated by a real-time control loop depending on the position information of the end-effector, which is usually acquired indirectly by using forward kinematics equations. Nevertheless, the kinematic model is insufficient to obtain accurate values if there are non-negligible compliant displacements. This gives a strong motivation for implementing a real-time stiffness model in the haptic control loop for improving its accuracy. Additionally, stiffness performance indices can be used at the design stage for enhancing the haptic devices impedance range within optimal design procedures. Fast solutions of a stiffness model are required for a real-time control as well as for decreasing the optimization time during a design process with a trade-off between accuracy and computational costs. In this study, we propose a computation time-efficient stiffness analysis of a parallel haptic device mechanism. The accuracy and computational costs of the proposed model are calculated and compared with a model that is obtained via a finite element method to demonstrate the effectiveness of the proposed approach with the desired real-time and accuracy performance. (C) 2019 Elsevier Ltd. All rights reserved. |
2019 |
Gur, Sebnem; Korkmaz, Koray; Kiper, Gokhan DESIGN OF ANTI-PARALLELOGRAM LOOP ASSEMBLIES Journal Article JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES, 60 (3), pp. 232-240, 2019, ISSN: 1028-365X. @article{ISI:000488985500006, title = {DESIGN OF ANTI-PARALLELOGRAM LOOP ASSEMBLIES}, author = {Sebnem Gur and Koray Korkmaz and Gokhan Kiper}, doi = {10.20898/j.iass.2019.201.006}, issn = {1028-365X}, year = {2019}, date = {2019-09-01}, journal = {JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES}, volume = {60}, number = {3}, pages = {232-240}, abstract = {Scissor mechanisms are frequently used for deployable structures and many studies have been conducted on the subject. Most of the studies consider scissor units as modules in the design process. An alternative approach is to utilize loops as the modules for design. In this paper, the design alternatives of single degree-of-freedom planar linkages comprising anti-parallelogram loops using the loop assembly method is presented. First, scissor mechanisms are reviewed. Next, the types of four-bar loops and the resulting linkages in the literature are introduced and those which are yet to be explored, anti-parallelogram being one of them, are identified. Then the loop assembly method and the examples in the literature are reviewed. As a method to form as many alternatives as possible, symmetry operations are proposed. Suitable frieze symmetry groups utilized for obtaining the assemblies are explained and the anti-parallelogram loop patterns are derived. Next, the single degree-of-freedom linkages are obtained from the loop assemblies. Finally, a selection of the resulting linkages with novel properties are presented. This study shows that loop assemblies are efficient in systematic type synthesis of scissor linkages, some types of which could not be foreseen by using units as modules.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Scissor mechanisms are frequently used for deployable structures and many studies have been conducted on the subject. Most of the studies consider scissor units as modules in the design process. An alternative approach is to utilize loops as the modules for design. In this paper, the design alternatives of single degree-of-freedom planar linkages comprising anti-parallelogram loops using the loop assembly method is presented. First, scissor mechanisms are reviewed. Next, the types of four-bar loops and the resulting linkages in the literature are introduced and those which are yet to be explored, anti-parallelogram being one of them, are identified. Then the loop assembly method and the examples in the literature are reviewed. As a method to form as many alternatives as possible, symmetry operations are proposed. Suitable frieze symmetry groups utilized for obtaining the assemblies are explained and the anti-parallelogram loop patterns are derived. Next, the single degree-of-freedom linkages are obtained from the loop assemblies. Finally, a selection of the resulting linkages with novel properties are presented. This study shows that loop assemblies are efficient in systematic type synthesis of scissor linkages, some types of which could not be foreseen by using units as modules. |
Maden, Feray; Akgun, Yenal; Kiper, Gokhan; Gur, Sebnem; Yar, Mujde; Korkmaz, Koray A CRITICAL REVIEW ON CLASSIFICATION AND TERMINOLOGY OF SCISSOR STRUCTURES Journal Article JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES, 60 (1, SI), pp. 47-64, 2019, ISSN: 1028-365X. @article{ISI:000464014000005, title = {A CRITICAL REVIEW ON CLASSIFICATION AND TERMINOLOGY OF SCISSOR STRUCTURES}, author = {Feray Maden and Yenal Akgun and Gokhan Kiper and Sebnem Gur and Mujde Yar and Koray Korkmaz}, doi = {10.20898/j.iass.2019.199.029}, issn = {1028-365X}, year = {2019}, date = {2019-03-01}, journal = {JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES}, volume = {60}, number = {1, SI}, pages = {47-64}, abstract = {When the existing literature on the research of scissor structures is thoroughly investigated, it is seen that different researchers use different terminologies and classifications especially for the definition of the primary units and the motion type. Some of the studies define the whole geometry based on the geometric properties of the primary scissor units and the unit lines while some other studies define it according to the loops. All these studies use different names for similar elements. This article aims to review the literature on the classification and terminology of scissor structures and represent the state of art on the studies. Tables are represented showing all approaches in the literature. In addition, the article criticizes the missing points of each terminology and definition, and proposes some new terminology. In order to arrive at this aim, different definitions of the primary scissor units and motion types used in key studies in the literature are investigated thoroughly. With several examples, it is demonstrated that naming the scissor units according to the resulting motion type might be misleading and it is better to specify the motion type for the whole structure. A classification for transformation of planar curves is presented.}, keywords = {}, pubstate = {published}, tppubtype = {article} } When the existing literature on the research of scissor structures is thoroughly investigated, it is seen that different researchers use different terminologies and classifications especially for the definition of the primary units and the motion type. Some of the studies define the whole geometry based on the geometric properties of the primary scissor units and the unit lines while some other studies define it according to the loops. All these studies use different names for similar elements. This article aims to review the literature on the classification and terminology of scissor structures and represent the state of art on the studies. Tables are represented showing all approaches in the literature. In addition, the article criticizes the missing points of each terminology and definition, and proposes some new terminology. In order to arrive at this aim, different definitions of the primary scissor units and motion types used in key studies in the literature are investigated thoroughly. With several examples, it is demonstrated that naming the scissor units according to the resulting motion type might be misleading and it is better to specify the motion type for the whole structure. A classification for transformation of planar curves is presented. |
2017 |
Uzunoglu, Emre; Dede, Mehmet Ismet Can Extending model-mediation method to multi-degree-of-freedom teleoperation systems experiencing time delays in communication Journal Article ROBOTICA, 35 (5), pp. 1121-1136, 2017, ISSN: 0263-5747. @article{ISI:000399043500007, title = {Extending model-mediation method to multi-degree-of-freedom teleoperation systems experiencing time delays in communication}, author = {Emre Uzunoglu and Mehmet Ismet Can Dede}, doi = {10.1017/S0263574715001010}, issn = {0263-5747}, year = {2017}, date = {2017-05-01}, journal = {ROBOTICA}, volume = {35}, number = {5}, pages = {1121-1136}, abstract = {In this study, a bilateral teleoperation control algorithm is developed in which the model-mediation method is integrated with an impedance controller. The model-mediation method is also extended to three-degrees-of-freedom teleoperation. The aim of this controller is to compensate for instability issues and excessive forcing applied to the slave environment stemming from time delays in communication. The proposed control method is experimentally tested with two haptic desktop devices. Test results indicate that stability and passivity of the bilateral teleoperation system is preserved under variable time delays in communication. It is also observed that safer interactions of the slave system with its environment can be achieved by utilizing an extended version of the model-mediation method with an impedance controller.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this study, a bilateral teleoperation control algorithm is developed in which the model-mediation method is integrated with an impedance controller. The model-mediation method is also extended to three-degrees-of-freedom teleoperation. The aim of this controller is to compensate for instability issues and excessive forcing applied to the slave environment stemming from time delays in communication. The proposed control method is experimentally tested with two haptic desktop devices. Test results indicate that stability and passivity of the bilateral teleoperation system is preserved under variable time delays in communication. It is also observed that safer interactions of the slave system with its environment can be achieved by utilizing an extended version of the model-mediation method with an impedance controller. |
Kiper, Gokhan; Dede, Mehmet Ismet Can; Maaroof, Omar W; Ozkahya, Merve Function generation with two loop mechanisms using decomposition and correction method Journal Article MECHANISM AND MACHINE THEORY, 110 , pp. 16-26, 2017, ISSN: 0094-114X. @article{ISI:000394063500002, title = {Function generation with two loop mechanisms using decomposition and correction method}, author = {Gokhan Kiper and Mehmet Ismet Can Dede and Omar W Maaroof and Merve Ozkahya}, doi = {10.1016/j.mechmachtheory.2016.12.004}, issn = {0094-114X}, year = {2017}, date = {2017-04-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {110}, pages = {16-26}, abstract = {Method of decomposition has been successfully applied to function generation with multi-loop mechanisms. For a two-loop mechanism, a function y = f(x) can be decomposed into two as w = g(x) and y = h(w) = h(g(x)) = f(x). This study makes use of the method of decomposition for two loop mechanisms, where the errors from each loop are forced to match each other. In the first loop, which includes the input of the mechanism, the decomposed function (g) is generated and the resulting structural error is determined. Then, for the second loop, the desired output of the function (f) is considered as an input and the structural error of the decomposed function (g) is determined. By matching the obtained structural errors, the final error in the output of the mechanism is reduced. Three different correction methods are proposed. The first method has three precision points per loop, while the second method has four. In the third method, the extrema of the errors from both loops are matched. The methods are applied to a Watt II type planar six-bar linkage for demonstration. Several numerical examples are worked out and the results are compared with the results in the literature.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Method of decomposition has been successfully applied to function generation with multi-loop mechanisms. For a two-loop mechanism, a function y = f(x) can be decomposed into two as w = g(x) and y = h(w) = h(g(x)) = f(x). This study makes use of the method of decomposition for two loop mechanisms, where the errors from each loop are forced to match each other. In the first loop, which includes the input of the mechanism, the decomposed function (g) is generated and the resulting structural error is determined. Then, for the second loop, the desired output of the function (f) is considered as an input and the structural error of the decomposed function (g) is determined. By matching the obtained structural errors, the final error in the output of the mechanism is reduced. Three different correction methods are proposed. The first method has three precision points per loop, while the second method has four. In the third method, the extrema of the errors from both loops are matched. The methods are applied to a Watt II type planar six-bar linkage for demonstration. Several numerical examples are worked out and the results are compared with the results in the literature. |
Kosun, Caglar; Ozdemir, Serhan Determining the complexity of multi-component conformal systems: A platoon-based approach Journal Article PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 471 , pp. 688-695, 2017, ISSN: 0378-4371. @article{ISI:000393733300064, title = {Determining the complexity of multi-component conformal systems: A platoon-based approach}, author = {Caglar Kosun and Serhan Ozdemir}, doi = {10.1016/j.physa.2016.12.027}, issn = {0378-4371}, year = {2017}, date = {2017-04-01}, journal = {PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS}, volume = {471}, pages = {688-695}, abstract = {Many systems in nature and engineering are composed of subsystems. These subsystems may be formed in a linear, planar or spatial array. A typical example of these formations is a chain of vehicles known as platoon formation in traffic flow. Platoon formation of vehicles is a linear or planar formation of vehicles where a certain and a constant headway, and sideway if applicable, is provided in between every and each one of them. It is argued in this paper that a well-automated platoon formation of vehicles is an extreme case of conformity. During this transformation from a many degrees of freedom formation to a solid object, Tsallis q value is computed to be ranging from one extreme case of q = 3 to the other where q = 1, when classified in terms of inverse temperatures of clearance fluctuations. At one-extreme of q = 3, one observes unbounded fluctuations in clearance fluctuations so that inverse temperature distributions approach a Dirac delta at the origin. At the other extreme of g = 1, fluctuations in clearance tend to zero asymptotically, where a solid structure of agents (vehicles) emerges. The transition from q = 3 to q = 1 is investigated through synthetic and experimental clearance fluctuations between the cars. The results show that during the transition from q = 3 to q = 1, the platoon loses its many degrees of freedom (dof) of motion until a solid single object emerges. Authors assert that the Tsallis q value of a platoon of vehicles is limited to 3 > q > 1. (C) 2016 Elsevier B.V. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Many systems in nature and engineering are composed of subsystems. These subsystems may be formed in a linear, planar or spatial array. A typical example of these formations is a chain of vehicles known as platoon formation in traffic flow. Platoon formation of vehicles is a linear or planar formation of vehicles where a certain and a constant headway, and sideway if applicable, is provided in between every and each one of them. It is argued in this paper that a well-automated platoon formation of vehicles is an extreme case of conformity. During this transformation from a many degrees of freedom formation to a solid object, Tsallis q value is computed to be ranging from one extreme case of q = 3 to the other where q = 1, when classified in terms of inverse temperatures of clearance fluctuations. At one-extreme of q = 3, one observes unbounded fluctuations in clearance fluctuations so that inverse temperature distributions approach a Dirac delta at the origin. At the other extreme of g = 1, fluctuations in clearance tend to zero asymptotically, where a solid structure of agents (vehicles) emerges. The transition from q = 3 to q = 1 is investigated through synthetic and experimental clearance fluctuations between the cars. The results show that during the transition from q = 3 to q = 1, the platoon loses its many degrees of freedom (dof) of motion until a solid single object emerges. Authors assert that the Tsallis q value of a platoon of vehicles is limited to 3 > q > 1. (C) 2016 Elsevier B.V. All rights reserved. |
Sahin, Osman Nuri; Uzunoglu, Emre; Tatlicioglu, Enver; Dede, Can M I Design and Development of an Educational Desktop Robot (RD)-D-3 Journal Article COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 25 (2), pp. 222-229, 2017, ISSN: 1061-3773. @article{ISI:000401196200006, title = {Design and Development of an Educational Desktop Robot (RD)-D-3}, author = {Osman Nuri Sahin and Emre Uzunoglu and Enver Tatlicioglu and Can M I Dede}, doi = {10.1002/cae.21792}, issn = {1061-3773}, year = {2017}, date = {2017-03-01}, journal = {COMPUTER APPLICATIONS IN ENGINEERING EDUCATION}, volume = {25}, number = {2}, pages = {222-229}, abstract = {Robotic desktop devices have been used for academic purposes for a variety of investigation and development studies. Desktop devices for academic/educational purposes have been highly anticipated especially in the fields of haptics, teleoperation systems, and control studies. This paper's motivation is to present the steps of designing, manufacturing, and implementing of Educational Desktop Robot (RD)-D-3 to be used for haptics, teleoperation, and redundancy control studies. The design, manufacturing details, kinematic, and dynamic model of the robot are described in the manuscript. Additionally, a case study is carried out for end effector control in task space is given and the results are shared. (C) 2017 Wiley Periodicals, Inc.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Robotic desktop devices have been used for academic purposes for a variety of investigation and development studies. Desktop devices for academic/educational purposes have been highly anticipated especially in the fields of haptics, teleoperation systems, and control studies. This paper's motivation is to present the steps of designing, manufacturing, and implementing of Educational Desktop Robot (RD)-D-3 to be used for haptics, teleoperation, and redundancy control studies. The design, manufacturing details, kinematic, and dynamic model of the robot are described in the manuscript. Additionally, a case study is carried out for end effector control in task space is given and the results are shared. (C) 2017 Wiley Periodicals, Inc. |
Kosun, Caglar; Ozdemir, Serhan An entropy-based analysis of lane changing behavior: An interactive approach Journal Article TRAFFIC INJURY PREVENTION, 18 (4), pp. 441-447, 2017, ISSN: 1538-9588. @article{ISI:000399359600018, title = {An entropy-based analysis of lane changing behavior: An interactive approach}, author = {Caglar Kosun and Serhan Ozdemir}, doi = {10.1080/15389588.2016.1204446}, issn = {1538-9588}, year = {2017}, date = {2017-01-01}, journal = {TRAFFIC INJURY PREVENTION}, volume = {18}, number = {4}, pages = {441-447}, abstract = {Objectives: As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety.Methods: The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided.Results: Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions.Conclusions: The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would match discretionary lane changing behavior. This article states that driver behaviors would be in the nonadditive entropy domain to provide a safe traffic stream and hence with vehicle accident prevention in mind.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Objectives: As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety.Methods: The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided.Results: Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions.Conclusions: The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would match discretionary lane changing behavior. This article states that driver behaviors would be in the nonadditive entropy domain to provide a safe traffic stream and hence with vehicle accident prevention in mind. |
Atarer, F; Korkmaz, K; Kiper, G Design alternatives of network of Altmann linkages Journal Article International Journal of Computational Methods and Experimental Measurements, 5 (4), pp. 495-503, 2017. @article{Atarer2017495, title = {Design alternatives of network of Altmann linkages}, author = {F Atarer and K Korkmaz and G Kiper}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032291841&doi=10.2495%2fCMEM-V5-N4-495-503&partnerID=40&md5=21a0c6a12a4aa176556157e4d54db241}, doi = {10.2495/CMEM-V5-N4-495-503}, year = {2017}, date = {2017-01-01}, journal = {International Journal of Computational Methods and Experimental Measurements}, volume = {5}, number = {4}, pages = {495-503}, abstract = {This paper presents a method of building deployable network assemblies derived from the single degree of freedom (DoF) over constrained Altmann linkage as a basic module. The method is based on assembling linkages with common links and joints or overlapping with extra R or 2R joints. New loops are emerged with overlapping method. The networks created have a single DoF, are over-constrained and have both fully deployed and folded configurations. The computer-aided models (CAD) are used to demonstrate these derived novel mechanisms. © 2017 WIT Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This paper presents a method of building deployable network assemblies derived from the single degree of freedom (DoF) over constrained Altmann linkage as a basic module. The method is based on assembling linkages with common links and joints or overlapping with extra R or 2R joints. New loops are emerged with overlapping method. The networks created have a single DoF, are over-constrained and have both fully deployed and folded configurations. The computer-aided models (CAD) are used to demonstrate these derived novel mechanisms. © 2017 WIT Press. |
Yar, M; Korkmaz, K; Kiper, G; Maden, F; Akgün, Y; Aktaş, E A novel planar scissor structure transforming between concave and convex configurations Journal Article International Journal of Computational Methods and Experimental Measurements, 5 (4), pp. 442-450, 2017. @article{Yar2017442, title = {A novel planar scissor structure transforming between concave and convex configurations}, author = {M Yar and K Korkmaz and G Kiper and F Maden and Y Akgün and E Aktaş}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051112573&doi=10.2495%2fCMEM-V5-N4-442-450&partnerID=40&md5=66bb8193b18ce907397210d6eae8b8dc}, doi = {10.2495/CMEM-V5-N4-442-450}, year = {2017}, date = {2017-01-01}, journal = {International Journal of Computational Methods and Experimental Measurements}, volume = {5}, number = {4}, pages = {442-450}, abstract = {In this paper, a novel two-dimensional scissor structure that transforms between concave and convex configurations is presented. The structure is designed by a method of assembling kite or anti-kite loops in the flat configuration. Angulated units are generated from the assembled loops. Finally, a new angulated scissor unit is introduced in order to design the novel scissor structure. © 2017 WIT Press.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this paper, a novel two-dimensional scissor structure that transforms between concave and convex configurations is presented. The structure is designed by a method of assembling kite or anti-kite loops in the flat configuration. Angulated units are generated from the assembled loops. Finally, a new angulated scissor unit is introduced in order to design the novel scissor structure. © 2017 WIT Press. |
2016 |
Gundogdu, Hilal Tolasa; Dede, Mehmet Ismet Can; Taner, Baris; Ridolfi, Alessandro; Costanzi, Riccardo; Allotta, Benedetto Design and testing of an innovative cleaning tool for underwater applications Journal Article PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 230 (4), pp. 579-590, 2016, ISSN: 1475-0902. @article{ISI:000392916800003, title = {Design and testing of an innovative cleaning tool for underwater applications}, author = {Hilal Tolasa Gundogdu and Mehmet Ismet Can Dede and Baris Taner and Alessandro Ridolfi and Riccardo Costanzi and Benedetto Allotta}, doi = {10.1177/1475090215610599}, issn = {1475-0902}, year = {2016}, date = {2016-11-01}, journal = {PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT}, volume = {230}, number = {4}, pages = {579-590}, abstract = {The aim of this work is to describe the development of an innovative cleaning tool for underwater applications, to be used in particular in the field of underwater archaeology. This work takes place in the framework of the EU FP7-funded ARROWS project. ARROWS adapts and develops low-cost autonomous underwater vehicle technologies to significantly reduce the costs of underwater archaeological operations, covering the full extent of archaeological campaigns. The project deals with underwater mapping, diagnosis and cleaning tasks. During the first half of the project, a cleaning tool prototype, able to be mounted on underwater vehicles, has been worked out: this cleaning tool will be exploited not only during research missions but also for the periodic monitoring, controlling and maintenance activities of well-known underwater archaeological sites (e.g. periodic cleaning operations).}, keywords = {}, pubstate = {published}, tppubtype = {article} } The aim of this work is to describe the development of an innovative cleaning tool for underwater applications, to be used in particular in the field of underwater archaeology. This work takes place in the framework of the EU FP7-funded ARROWS project. ARROWS adapts and develops low-cost autonomous underwater vehicle technologies to significantly reduce the costs of underwater archaeological operations, covering the full extent of archaeological campaigns. The project deals with underwater mapping, diagnosis and cleaning tasks. During the first half of the project, a cleaning tool prototype, able to be mounted on underwater vehicles, has been worked out: this cleaning tool will be exploited not only during research missions but also for the periodic monitoring, controlling and maintenance activities of well-known underwater archaeological sites (e.g. periodic cleaning operations). |
Dede, Mehmet Ismet Can; Maaroof, Omar W; Tatlicioglu, Enver A New Objective Function for Obstacle Avoidance by Redundant Service Robot Arms Journal Article INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 13 , 2016, ISSN: 1729-8806. @article{ISI:000372038700001, title = {A New Objective Function for Obstacle Avoidance by Redundant Service Robot Arms}, author = {Mehmet Ismet Can Dede and Omar W Maaroof and Enver Tatlicioglu}, doi = {10.5772/62471}, issn = {1729-8806}, year = {2016}, date = {2016-03-01}, journal = {INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS}, volume = {13}, abstract = {The performance of task-space tracking control of kinematically redundant robots regulating self-motion to ensure obstacle avoidance is studied and discussed. As the sub-task objective, the links of the kinematically redundant assistive robot should avoid any collisions with the patient that is being assisted. The shortcomings of the obstacle avoidance algorithms are discussed and a new obstacle avoidance algorithm is proposed. The performance of the proposed algorithm is validated with tests that were carried out using the virtual model of a seven degrees-of-freedom robot arm. The test results indicate that the developed controller for the robot manipulator is successful in both accomplishing the main-task and the sub-task objectives.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The performance of task-space tracking control of kinematically redundant robots regulating self-motion to ensure obstacle avoidance is studied and discussed. As the sub-task objective, the links of the kinematically redundant assistive robot should avoid any collisions with the patient that is being assisted. The shortcomings of the obstacle avoidance algorithms are discussed and a new obstacle avoidance algorithm is proposed. The performance of the proposed algorithm is validated with tests that were carried out using the virtual model of a seven degrees-of-freedom robot arm. The test results indicate that the developed controller for the robot manipulator is successful in both accomplishing the main-task and the sub-task objectives. |
Kosun, Caglar; Ozdemir, Serhan A superstatistical model of vehicular traffic flow Journal Article PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 444 , pp. 466-475, 2016, ISSN: 0378-4371. @article{ISI:000366785900043, title = {A superstatistical model of vehicular traffic flow}, author = {Caglar Kosun and Serhan Ozdemir}, doi = {10.1016/j.physa.2015.10.042}, issn = {0378-4371}, year = {2016}, date = {2016-02-01}, journal = {PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS}, volume = {444}, pages = {466-475}, abstract = {In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1/root beta. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian. (C) 2015 Elsevier B.V. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1/root beta. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian. (C) 2015 Elsevier B.V. All rights reserved. |
Uzunoglu, Emre; Dede, Mehmet Ismet Can; Kiper, Gokhan Trajectory planning for a planar macro-micro manipulator of a laser-cutting machine Journal Article INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 43 (5, SI), pp. 513-523, 2016, ISSN: 0143-991X. @article{ISI:000386142100009, title = {Trajectory planning for a planar macro-micro manipulator of a laser-cutting machine}, author = {Emre Uzunoglu and Mehmet Ismet Can Dede and Gokhan Kiper}, doi = {10.1108/IR-02-2016-0057}, issn = {0143-991X}, year = {2016}, date = {2016-01-01}, journal = {INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION}, volume = {43}, number = {5, SI}, pages = {513-523}, abstract = {Purpose - In the industry, there is always a demand to shorten the task completion durations to maximize the efficiency of the operation. This work focuses on making use of a special type of kinematic redundancy, macro-micro manipulation, to minimize the task completion duration. The purpose of this paper is to develop the most convenient trajectory planner to be integrated with industrial computerized numerical control (CNC) systems to resolve kinematic redundancy for task duration minimization. Design/methodology/approach - A special type of kinematic redundancy is devised by using two kinematically different mechanisms that have different advantages, which are named as macro and micro mechanisms. In this case, the control design including the trajectory planning should be devised taking into account the distinct advantages of both mechanisms. A new trajectory planning algorithm is designed and used for the constructed planar laser-cutting machine, and some benchmark pieces are cut. Findings - Offline method has practical limitations for employment in a real case scenario such as assuming infinite jerk limits for each axis motion. This limitation was removed by using an online trajectory generation technique. Experimental test results indicate that the online trajectory planning technique developed for the macro-micro mechanism to shorten the task duration was successful. Practical implications - Although the new trajectory planning algorithm is implemented for a laser-cutting machine, it can also be used for other manufacturing systems that require higher acceleration and accuracy levels than the conventional machines. The new algorithm is compatible with the commercially available CNC systems. Originality/value - In this work, a new approach to reducing the task duration for planar machining operations was introduced by making use of macro-micro manipulation concept. The core novelty of the work is devising trajectory planning algorithms to get the most efficiency in terms of acceleration limits from a macro-micro manipulation while making these algorithms deployable to most of the CNC systems.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Purpose - In the industry, there is always a demand to shorten the task completion durations to maximize the efficiency of the operation. This work focuses on making use of a special type of kinematic redundancy, macro-micro manipulation, to minimize the task completion duration. The purpose of this paper is to develop the most convenient trajectory planner to be integrated with industrial computerized numerical control (CNC) systems to resolve kinematic redundancy for task duration minimization. Design/methodology/approach - A special type of kinematic redundancy is devised by using two kinematically different mechanisms that have different advantages, which are named as macro and micro mechanisms. In this case, the control design including the trajectory planning should be devised taking into account the distinct advantages of both mechanisms. A new trajectory planning algorithm is designed and used for the constructed planar laser-cutting machine, and some benchmark pieces are cut. Findings - Offline method has practical limitations for employment in a real case scenario such as assuming infinite jerk limits for each axis motion. This limitation was removed by using an online trajectory generation technique. Experimental test results indicate that the online trajectory planning technique developed for the macro-micro mechanism to shorten the task duration was successful. Practical implications - Although the new trajectory planning algorithm is implemented for a laser-cutting machine, it can also be used for other manufacturing systems that require higher acceleration and accuracy levels than the conventional machines. The new algorithm is compatible with the commercially available CNC systems. Originality/value - In this work, a new approach to reducing the task duration for planar machining operations was introduced by making use of macro-micro manipulation concept. The core novelty of the work is devising trajectory planning algorithms to get the most efficiency in terms of acceleration limits from a macro-micro manipulation while making these algorithms deployable to most of the CNC systems. |
2015 |
Altun, Kerem; MacLean, Karon E Recognizing affect in human touch of a robot Journal Article PATTERN RECOGNITION LETTERS, 66 , pp. 31-40, 2015, ISSN: 0167-8655, (1st International Workshop on Multimodal Pattern Recognition of Social Signals in Human Computer Interaction (MPRSS), Tsukuba, JAPAN, NOV 11, 2012). @article{ISI:000362271100005, title = {Recognizing affect in human touch of a robot}, author = {Kerem Altun and Karon E MacLean}, doi = {10.1016/j.patrec.2014.10.016}, issn = {0167-8655}, year = {2015}, date = {2015-11-01}, journal = {PATTERN RECOGNITION LETTERS}, volume = {66}, pages = {31-40}, organization = {Int Assoc Pattern Recognit (IAPR); TC3}, note = {1st International Workshop on Multimodal Pattern Recognition of Social Signals in Human Computer Interaction (MPRSS), Tsukuba, JAPAN, NOV 11, 2012}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Kiper, Gokhan; Bilgincan, Tunc Function generation synthesis of spherical 5R mechanism with regional spacing and Chebyshev approximation Journal Article MECHANISM AND MACHINE THEORY, 90 , pp. 37-46, 2015, ISSN: 0094-114X. @article{ISI:000353985200003, title = {Function generation synthesis of spherical 5R mechanism with regional spacing and Chebyshev approximation}, author = {Gokhan Kiper and Tunc Bilgincan}, doi = {10.1016/j.mechmachtheory.2015.03.001}, issn = {0094-114X}, year = {2015}, date = {2015-08-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {90}, pages = {37-46}, abstract = {The Chebyshev approximation is well known to be applicable for the approximation of single input-single output functions by means of a function generator mechanism. The approximation method may be also applied to multi-input functions, although until recently, it was not used for function generation with multi-degrees-of-freedom mechanisms. In a recent study, the authors applied the approximation method to a two-degrees-of-freedom mechanism for the first time, however the selection and iteration of the design points at which the errors were minimized were not satisfactory. In this study, an alternative method of selection and iteration for these design points is introduced and the corresponding spacing is called the ``regional spacing''. As a case study for the application of the approximation of multi-input functions, a spherical 5R mechanism is used to generate a two input-single-output function. The input joints of the mechanism are selected as one of the fixed joints and the moving mid-joint, whereas the remaining fixed joint represents the output. The synthesis problem is analytically formulated and presented in polynomial form for five and six unknown parameters. The synthesis problem for five unknown parameters is illustrated as a numerical example. Regional spacing is used for the selection and iteration of design points for the synthesis. The Chebyshev approximation along with the Remez algorithm is utilized to find the unknown construction parameters and the error of the function. The design points and the coefficients of the approximation polynomial are determined by numerical iteration using six moving points. At each iteration step, the design points are relocated at the extremum error points in their respective regions. Iterations are repeated until the magnitudes of the extremum point errors are approximately equal. Finally, the construction parameters of the mechanism are determined and the variation of the percentage error between the desired and generated function values is obtained. (C) 2015 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The Chebyshev approximation is well known to be applicable for the approximation of single input-single output functions by means of a function generator mechanism. The approximation method may be also applied to multi-input functions, although until recently, it was not used for function generation with multi-degrees-of-freedom mechanisms. In a recent study, the authors applied the approximation method to a two-degrees-of-freedom mechanism for the first time, however the selection and iteration of the design points at which the errors were minimized were not satisfactory. In this study, an alternative method of selection and iteration for these design points is introduced and the corresponding spacing is called the ``regional spacing''. As a case study for the application of the approximation of multi-input functions, a spherical 5R mechanism is used to generate a two input-single-output function. The input joints of the mechanism are selected as one of the fixed joints and the moving mid-joint, whereas the remaining fixed joint represents the output. The synthesis problem is analytically formulated and presented in polynomial form for five and six unknown parameters. The synthesis problem for five unknown parameters is illustrated as a numerical example. Regional spacing is used for the selection and iteration of design points for the synthesis. The Chebyshev approximation along with the Remez algorithm is utilized to find the unknown construction parameters and the error of the function. The design points and the coefficients of the approximation polynomial are determined by numerical iteration using six moving points. At each iteration step, the design points are relocated at the extremum error points in their respective regions. Iterations are repeated until the magnitudes of the extremum point errors are approximately equal. Finally, the construction parameters of the mechanism are determined and the variation of the percentage error between the desired and generated function values is obtained. (C) 2015 Elsevier Ltd. All rights reserved. |
Kosun, Caglar; Celik, Huseyin Murat; Ozdemir, Serhan AN ANALYSIS OF VEHICULAR TRAFFIC FLOW USING LANGEVIN EQUATION Journal Article PROMET-TRAFFIC & TRANSPORTATION, 27 (4), pp. 317-324, 2015, ISSN: 0353-5320. @article{ISI:000361265300005, title = {AN ANALYSIS OF VEHICULAR TRAFFIC FLOW USING LANGEVIN EQUATION}, author = {Caglar Kosun and Huseyin Murat Celik and Serhan Ozdemir}, doi = {10.7307/ptt.v27i4.1613}, issn = {0353-5320}, year = {2015}, date = {2015-01-01}, journal = {PROMET-TRAFFIC & TRANSPORTATION}, volume = {27}, number = {4}, pages = {317-324}, abstract = {Traffic flow data are stochastic in nature, and an abundance of literature exists thereof. One way to express stochastic data is the Langevin equation. Langevin equation consists of two parts. The first part is known as the deterministic drift term, the other as the stochastic diffusion term. Langevin equation does not only help derive the deterministic and random terms of the selected portion of the city of Istanbul traffic empirically, but also sheds light on the underlying dynamics of the flow. Drift diagrams have shown that slow lane tends to get congested faster when vehicle speeds attain a value of 25 km/h, and it is 20 km/h for the fast lane. Three or four distinct regimes may be discriminated again from the drift diagrams; congested, intermediate, and free-flow regimes. At places, even the intermediate regime may be divided in two, often with readiness to congestion. This has revealed the fact that for the selected portion of the highway, there are two main states of flow, namely, congestion and free-flow, with an intermediate state where the noise-driven traffic flow forces the flow into either of the distinct regimes.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Traffic flow data are stochastic in nature, and an abundance of literature exists thereof. One way to express stochastic data is the Langevin equation. Langevin equation consists of two parts. The first part is known as the deterministic drift term, the other as the stochastic diffusion term. Langevin equation does not only help derive the deterministic and random terms of the selected portion of the city of Istanbul traffic empirically, but also sheds light on the underlying dynamics of the flow. Drift diagrams have shown that slow lane tends to get congested faster when vehicle speeds attain a value of 25 km/h, and it is 20 km/h for the fast lane. Three or four distinct regimes may be discriminated again from the drift diagrams; congested, intermediate, and free-flow regimes. At places, even the intermediate regime may be divided in two, often with readiness to congestion. This has revealed the fact that for the selected portion of the highway, there are two main states of flow, namely, congestion and free-flow, with an intermediate state where the noise-driven traffic flow forces the flow into either of the distinct regimes. |
2014 |
Alizade, Rasim I; Kiper, Gokhan; Bagdadioglu, Baris; Dede, Can M I Function synthesis of Bennett 6R mechanisms using Chebyshev approximation Journal Article MECHANISM AND MACHINE THEORY, 81 , pp. 62-78, 2014, ISSN: 0094-114X. @article{ISI:000341141400006, title = {Function synthesis of Bennett 6R mechanisms using Chebyshev approximation}, author = {Rasim I Alizade and Gokhan Kiper and Baris Bagdadioglu and Can M I Dede}, doi = {10.1016/j.mechmachtheory.2014.06.010}, issn = {0094-114X}, year = {2014}, date = {2014-11-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {81}, pages = {62-78}, abstract = {This study focuses on approximate function synthesis of the three types of overconstrained Bennett 6R mechanisms using Chebyshev approximation. The three mechanisms are the double-planar, double-spherical and the plano-spherical 6R linkages. The single-loop 6R mechanisms are dissected into two imaginary loops and function synthesis is performed for both loops. First, the link lengths are employed as construction parameters of the mechanism. Then extra construction parameters for the input or output joint variables are introduced in order to increase the design points and hence enhance the accuracy of approximation. The synthesis formulations are applied computationally as case studies. The case studies illustrate how a designer can compare the three types of Bennett 6R mechanisms for the same function. Also we present a comparison of the spherical four-bar with the double-spherical 6R mechanism and show that the accuracy is improved when the 6R linkage is used. (C) 2014 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This study focuses on approximate function synthesis of the three types of overconstrained Bennett 6R mechanisms using Chebyshev approximation. The three mechanisms are the double-planar, double-spherical and the plano-spherical 6R linkages. The single-loop 6R mechanisms are dissected into two imaginary loops and function synthesis is performed for both loops. First, the link lengths are employed as construction parameters of the mechanism. Then extra construction parameters for the input or output joint variables are introduced in order to increase the design points and hence enhance the accuracy of approximation. The synthesis formulations are applied computationally as case studies. The case studies illustrate how a designer can compare the three types of Bennett 6R mechanisms for the same function. Also we present a comparison of the spherical four-bar with the double-spherical 6R mechanism and show that the accuracy is improved when the 6R linkage is used. (C) 2014 Elsevier Ltd. All rights reserved. |
Maaroof, Omar W; Dede, Mehmet Ismet Can Kinematic synthesis of over-constrained double-spherical six-bar mechanism Journal Article MECHANISM AND MACHINE THEORY, 73 , pp. 154-168, 2014, ISSN: 0094-114X. @article{ISI:000332399300011, title = {Kinematic synthesis of over-constrained double-spherical six-bar mechanism}, author = {Omar W Maaroof and Mehmet Ismet Can Dede}, doi = {10.1016/j.mechmachtheory.2013.10.013}, issn = {0094-114X}, year = {2014}, date = {2014-03-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {73}, pages = {154-168}, abstract = {The main problem in the synthesis of any mechanism is the fact that the objective function of the mechanism, which will be synthesized, should be found and simplified by using appropriate algebraic method. Finding objective function and calculation process can become complicated especially when the number of design parameters is increased for the over-constrained mechanisms. A new technique for solving the kinematic synthesis of over-constrained double-spherical six-bar mechanism is developed and applied in this work. Interpolation approximation is used during synthesis procedure. A numerical example for the kinematic synthesis procedure is given to validate the theory in application. (C) 2013 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The main problem in the synthesis of any mechanism is the fact that the objective function of the mechanism, which will be synthesized, should be found and simplified by using appropriate algebraic method. Finding objective function and calculation process can become complicated especially when the number of design parameters is increased for the over-constrained mechanisms. A new technique for solving the kinematic synthesis of over-constrained double-spherical six-bar mechanism is developed and applied in this work. Interpolation approximation is used during synthesis procedure. A numerical example for the kinematic synthesis procedure is given to validate the theory in application. (C) 2013 Elsevier Ltd. All rights reserved. |
2013 |
Kiper, G; Söylemez, E Polyhedral linkages obtained as assemblies of planar link groups Journal Article Frontiers of Mechanical Engineering, 8 (1), pp. 3-9, 2013. @article{Kiper20133, title = {Polyhedral linkages obtained as assemblies of planar link groups}, author = {G Kiper and E Söylemez}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874799475&doi=10.1007%2fs11465-013-0363-6&partnerID=40&md5=f3339513404eac12eb100881e2c6ac47}, doi = {10.1007/s11465-013-0363-6}, year = {2013}, date = {2013-01-01}, journal = {Frontiers of Mechanical Engineering}, volume = {8}, number = {1}, pages = {3-9}, abstract = {The study aims to devise means of obtaining polyhedral linkages for homothetic deployment of polyhedral shapes by embedding planar link groups in faces of the polyhedral shape of interest. The questions of which polyhedral shapes may be suitable for such a purpose and what are the compatibility conditions for spatially assembling planar link groups are addressed. Homohedral and tangential polyhedral shapes are found to be suitable for the task and some examples of linkages are worked out. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The study aims to devise means of obtaining polyhedral linkages for homothetic deployment of polyhedral shapes by embedding planar link groups in faces of the polyhedral shape of interest. The questions of which polyhedral shapes may be suitable for such a purpose and what are the compatibility conditions for spatially assembling planar link groups are addressed. Homohedral and tangential polyhedral shapes are found to be suitable for the task and some examples of linkages are worked out. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg. |
Kiper, Gökhan; Bilgincan, Tunç; Dede, Mehmet İsmet Can Function generation synthesis of planar 5R mechanism Journal Article 2013. @article{kiper2013function, title = {Function generation synthesis of planar 5R mechanism}, author = {Gökhan Kiper and Tunç Bilgincan and Mehmet İsmet Can Dede}, url = {http://hdl.handle.net/11147/4217}, year = {2013}, date = {2013-01-01}, publisher = {IFToMM}, abstract = {This paper deals with the function generation problem for a planar five-bar mechanism. The inputs to the mechanism are selected as one of the fixed joints and the mid-joint, whereas the remaining fixed joint represents the output. Synthesis problem of the five-bar mechanism is analytically formulated and an objective function is expressed in polynomial form. Function generation synthesis is performed with equal spacing and Chebyshev approximation method. The four unknown construction parameters and the error are evaluated by means of five design points and the coefficients of the objective function are determined by numerical iteration using four stationary and one moving design point. Stationary points are placed at the boundaries of the motion and the moving point is re-selected at each iteration as the point corresponding to the extremum error. Iterations are repeated until the values are stabilized. The stabilization usually occurs at the third iteration. By this method, the maximum error values are approximately equated, hence the total error is bounded at certain limits. Finally the construction parameters of the mechanism are determined.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This paper deals with the function generation problem for a planar five-bar mechanism. The inputs to the mechanism are selected as one of the fixed joints and the mid-joint, whereas the remaining fixed joint represents the output. Synthesis problem of the five-bar mechanism is analytically formulated and an objective function is expressed in polynomial form. Function generation synthesis is performed with equal spacing and Chebyshev approximation method. The four unknown construction parameters and the error are evaluated by means of five design points and the coefficients of the objective function are determined by numerical iteration using four stationary and one moving design point. Stationary points are placed at the boundaries of the motion and the moving point is re-selected at each iteration as the point corresponding to the extremum error. Iterations are repeated until the values are stabilized. The stabilization usually occurs at the third iteration. By this method, the maximum error values are approximately equated, hence the total error is bounded at certain limits. Finally the construction parameters of the mechanism are determined. |
2012 |
Kiper, Gökhan; Soylemez, Eres Homothetic Jitterbug-like linkages Journal Article MECHANISM AND MACHINE THEORY, 51 , pp. 145-158, 2012, ISSN: 0094-114X. @article{ISI:000300618000010, title = {Homothetic Jitterbug-like linkages}, author = {Gökhan Kiper and Eres Soylemez}, doi = {10.1016/j.mechmachtheory.2011.11.014}, issn = {0094-114X}, year = {2012}, date = {2012-05-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {51}, pages = {145-158}, abstract = {Conformal polyhedral linkages have drawn attention of scientists and engineers since the invention of Buckminster Fuller: a highly overconstrained spatial linkage, the Jitterbug. Many studies aimed to generalize Jitterbug-like linkages have been published, however a complete classification does not yet exist. This study introduces a definition for Jitterbug-like linkages and two major assumptions and then focuses on the properties of homothetic linkages. (C) 2011 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Conformal polyhedral linkages have drawn attention of scientists and engineers since the invention of Buckminster Fuller: a highly overconstrained spatial linkage, the Jitterbug. Many studies aimed to generalize Jitterbug-like linkages have been published, however a complete classification does not yet exist. This study introduces a definition for Jitterbug-like linkages and two major assumptions and then focuses on the properties of homothetic linkages. (C) 2011 Elsevier Ltd. All rights reserved. |
Altun, Kerem; Barshan, Billur Pedestrian dead reckoning employing simultaneous activity recognition cues Journal Article MEASUREMENT SCIENCE AND TECHNOLOGY, 23 (2), 2012, ISSN: 0957-0233. @article{ISI:000300057900012, title = {Pedestrian dead reckoning employing simultaneous activity recognition cues}, author = {Kerem Altun and Billur Barshan}, doi = {10.1088/0957-0233/23/2/025103}, issn = {0957-0233}, year = {2012}, date = {2012-02-01}, journal = {MEASUREMENT SCIENCE AND TECHNOLOGY}, volume = {23}, number = {2}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2011 |
Gezgin, Erkin; Ozdemir, Serhan Classification of manipulators of the same origin by virtue of compactness and complexity Journal Article MECHANISM AND MACHINE THEORY, 46 (10), pp. 1425-1433, 2011, ISSN: 0094-114X. @article{ISI:000293062700007, title = {Classification of manipulators of the same origin by virtue of compactness and complexity}, author = {Erkin Gezgin and Serhan Ozdemir}, doi = {10.1016/j.mechmachtheory.2011.05.009}, issn = {0094-114X}, year = {2011}, date = {2011-10-01}, journal = {MECHANISM AND MACHINE THEORY}, volume = {46}, number = {10}, pages = {1425-1433}, abstract = {This work deals with a classification method that employs concepts such as complexity and compactness. The idea is to classify manipulators, or any other mechanism for that matter, of the same origin, based on the geometry of the joints, the tasks performed by the joints, the efficiency and the manufacturing cost to generate the specified efficiency. It is known that successive units on a single branch create individual uncertainties that affect the eventual quality of the performed operation [1]. An entropic expression quantifies this uncertainty in terms of the number of links and the unit effectiveness. The concepts of compactness and complexity have been formulated, and these concepts are explained through serial and parallel manipulators with varying parameters. Eventually, a cost function is created which is a function of complexity, uncertainty and the manufacturing cost. A worked example on M = 6 Stewart-Gough platform is given how this cost function could be taken advantage of when deciding an initial manipulator. A genetic algorithm is used for the optimization of the cost function, where the results are tabulated. (C) 2011 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This work deals with a classification method that employs concepts such as complexity and compactness. The idea is to classify manipulators, or any other mechanism for that matter, of the same origin, based on the geometry of the joints, the tasks performed by the joints, the efficiency and the manufacturing cost to generate the specified efficiency. It is known that successive units on a single branch create individual uncertainties that affect the eventual quality of the performed operation [1]. An entropic expression quantifies this uncertainty in terms of the number of links and the unit effectiveness. The concepts of compactness and complexity have been formulated, and these concepts are explained through serial and parallel manipulators with varying parameters. Eventually, a cost function is created which is a function of complexity, uncertainty and the manufacturing cost. A worked example on M = 6 Stewart-Gough platform is given how this cost function could be taken advantage of when deciding an initial manipulator. A genetic algorithm is used for the optimization of the cost function, where the results are tabulated. (C) 2011 Elsevier Ltd. All rights reserved. |
Coskun, Anil; Sevil, Hakki Erhan; Ozdemir, Serhan Cost effective localization in distributed sensory networks Journal Article ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 24 (2), pp. 232-237, 2011, ISSN: 0952-1976. @article{ISI:000287066800003, title = {Cost effective localization in distributed sensory networks}, author = {Anil Coskun and Hakki Erhan Sevil and Serhan Ozdemir}, doi = {10.1016/j.engappai.2010.10.006}, issn = {0952-1976}, year = {2011}, date = {2011-03-01}, journal = {ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE}, volume = {24}, number = {2}, pages = {232-237}, abstract = {The most important mechanism to occur in biological distributed sensory networks (DSNs) is called lateral inhibition, (LI). LI relies on one simple principle. Each sensor strives to suppress its neighbors in proportion to its own excitation. In this study, LI mechanism is exploited to localize the unknown position of a light source that illuminated the photosensitive sensory network containing high and low quality sensors. Each photosensitive sensor was then calibrated to accurately read the distance to the light source. A series of experiments were conducted employing both quality sensors. Low quality array was allowed to take advantage of LI, whereas the high quality one was not. Results showed that the lateral inhibition mechanism increased the sensitivity of inferior quality sensors, giving the ability to make the localization as sensitive as high quality sensors do. This suggests that the networks with multitude of sensors could be made cost-effective, were these sensory networks equipped with LI. (C) 2010 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The most important mechanism to occur in biological distributed sensory networks (DSNs) is called lateral inhibition, (LI). LI relies on one simple principle. Each sensor strives to suppress its neighbors in proportion to its own excitation. In this study, LI mechanism is exploited to localize the unknown position of a light source that illuminated the photosensitive sensory network containing high and low quality sensors. Each photosensitive sensor was then calibrated to accurately read the distance to the light source. A series of experiments were conducted employing both quality sensors. Low quality array was allowed to take advantage of LI, whereas the high quality one was not. Results showed that the lateral inhibition mechanism increased the sensitivity of inferior quality sensors, giving the ability to make the localization as sensitive as high quality sensors do. This suggests that the networks with multitude of sensors could be made cost-effective, were these sensory networks equipped with LI. (C) 2010 Elsevier Ltd. All rights reserved. |
Sevil, Hakki Erhan; Ozdemir, Serhan Prediction of microdrill breakage using rough sets Journal Article AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 25 (1), pp. 15-23, 2011, ISSN: 0890-0604. @article{ISI:000287388000002, title = {Prediction of microdrill breakage using rough sets}, author = {Hakki Erhan Sevil and Serhan Ozdemir}, doi = {10.1017/S0890060410000144}, issn = {0890-0604}, year = {2011}, date = {2011-02-01}, journal = {AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING}, volume = {25}, number = {1}, pages = {15-23}, abstract = {This study attempts to correlate the nonlinear invariants' with the changing conditions of a drilling process through a series of condition monitoring experiments on small diameter (1 mm) drill bits. Run-to-failure tests are performed on these drill bits, and vibration data are consecutively gathered at equal time intervals. Nonlinear invariants, such as the Kolmogorov entropy and correlation dimension, and statistical parameters are calculated based on the corresponding conditions of the drill bits. By intervariations of these values between two successive measurements, a drop rise table is created. Any variation that is within a certain threshold (+/-20% of the measurements in this case) is assumed to be constant. Any fluctuation above or below is assumed to be either a rise or a drop. The reduct and conflict tables then help eliminate incongruous and redundant data by the use of rough sets (RSs). Inconsistent data, which by definition is the boundary region, are classified through certainty and coverage factors. By handling inconsistencies and redundancies, 11 rules are extracted from 39 experiments, representing the underlying rules. Then 22 new experiments are used to check the validity of the rule space. The RS decision frame performs best at predicting no failure cases. It is believed that RSs are superior in dealing with real-life data over fuzzy set logic in that actual measured data are never as consistent as here and may dominate the monitoring of the manufacturing processes as it becomes more widespread.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This study attempts to correlate the nonlinear invariants' with the changing conditions of a drilling process through a series of condition monitoring experiments on small diameter (1 mm) drill bits. Run-to-failure tests are performed on these drill bits, and vibration data are consecutively gathered at equal time intervals. Nonlinear invariants, such as the Kolmogorov entropy and correlation dimension, and statistical parameters are calculated based on the corresponding conditions of the drill bits. By intervariations of these values between two successive measurements, a drop rise table is created. Any variation that is within a certain threshold (+/-20% of the measurements in this case) is assumed to be constant. Any fluctuation above or below is assumed to be either a rise or a drop. The reduct and conflict tables then help eliminate incongruous and redundant data by the use of rough sets (RSs). Inconsistent data, which by definition is the boundary region, are classified through certainty and coverage factors. By handling inconsistencies and redundancies, 11 rules are extracted from 39 experiments, representing the underlying rules. Then 22 new experiments are used to check the validity of the rule space. The RS decision frame performs best at predicting no failure cases. It is believed that RSs are superior in dealing with real-life data over fuzzy set logic in that actual measured data are never as consistent as here and may dominate the monitoring of the manufacturing processes as it becomes more widespread. |
2010 |
Altun, Kerem; Barshan, Billur; Tuncel, Orkun Comparative study on classifying human activities with miniature inertial and magnetic sensors Journal Article PATTERN RECOGNITION, 43 (10), pp. 3605-3620, 2010, ISSN: 0031-3203. @article{ISI:000280006700036, title = {Comparative study on classifying human activities with miniature inertial and magnetic sensors}, author = {Kerem Altun and Billur Barshan and Orkun Tuncel}, doi = {10.1016/j.patcog.2010.04.019}, issn = {0031-3203}, year = {2010}, date = {2010-10-01}, journal = {PATTERN RECOGNITION}, volume = {43}, number = {10}, pages = {3605-3620}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Akgun, Yenal; Gantes, Charis J; Kalochairetis, Konstantinos E; Kiper, Gokhan A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures Journal Article ENGINEERING STRUCTURES, 32 (9), pp. 2873-2883, 2010, ISSN: 0141-0296. @article{ISI:000281995300032, title = {A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures}, author = {Yenal Akgun and Charis J Gantes and Konstantinos E Kalochairetis and Gokhan Kiper}, doi = {10.1016/j.engstruct.2010.05.006}, issn = {0141-0296}, year = {2010}, date = {2010-09-01}, journal = {ENGINEERING STRUCTURES}, volume = {32}, number = {9}, pages = {2873-2883}, abstract = {In this paper, a new adaptive scissor-hinge structure is introduced, which can be converted by means of actuators between a multitude of curvilinear arch-like shapes, where it can be stabilized and carry loads. The key point of this new structure is the proposed Modified Scissor-Like Element (M-SLE). With the development of this element, it becomes possible to change the geometry of the whole system without changing the dimensions of the struts or the span. The proposed scissor-hinge structure discussed here is planar, but it is also possible to combine structures in groups to create spatial systems. After outlining the differences of the proposed structure with existing designs, the dimensional properties of the M-SLE are introduced. Then, geometric principles and shape limitations of the whole structure are explained. Finally, structural analysis of the structure in different geometric configurations is performed, in order to discuss stiffness limitations associated with the advantage of increased mobility. (C) 2010 Elsevier Ltd. All rights reserved.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this paper, a new adaptive scissor-hinge structure is introduced, which can be converted by means of actuators between a multitude of curvilinear arch-like shapes, where it can be stabilized and carry loads. The key point of this new structure is the proposed Modified Scissor-Like Element (M-SLE). With the development of this element, it becomes possible to change the geometry of the whole system without changing the dimensions of the struts or the span. The proposed scissor-hinge structure discussed here is planar, but it is also possible to combine structures in groups to create spatial systems. After outlining the differences of the proposed structure with existing designs, the dimensional properties of the M-SLE are introduced. Then, geometric principles and shape limitations of the whole structure are explained. Finally, structural analysis of the structure in different geometric configurations is performed, in order to discuss stiffness limitations associated with the advantage of increased mobility. (C) 2010 Elsevier Ltd. All rights reserved. |
Altun, Kerem; Barshan, Billur Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps Journal Article AUTONOMOUS ROBOTS, 29 (2), pp. 151-168, 2010, ISSN: 0929-5593. @article{ISI:000278810500002, title = {Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps}, author = {Kerem Altun and Billur Barshan}, doi = {10.1007/s10514-010-9181-4}, issn = {0929-5593}, year = {2010}, date = {2010-08-01}, journal = {AUTONOMOUS ROBOTS}, volume = {29}, number = {2}, pages = {151-168}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2009 |
Tuncel, Orkun; Altun, Kerem; Barshan, Billur Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes Journal Article SENSORS, 9 (11), pp. 8508-8546, 2009. @article{ISI:000272189700009, title = {Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes}, author = {Orkun Tuncel and Kerem Altun and Billur Barshan}, doi = {10.3390/s91108508}, year = {2009}, date = {2009-11-01}, journal = {SENSORS}, volume = {9}, number = {11}, pages = {8508-8546}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
Project Title | Director of the Project | Start Date | Funds |
Yüksek Hassasiyetli Haptik Cihaz Tasarımı | Doç. Dr. M. İ. Can Dede | 2013 | AB 7. Çerçeve Programı Geriye Dönüş Hibeleri |
Bomba İmha Robotu Tasarımı ve Prototipi İmalatı | Doç.Dr. E. Faruk Keçeci | 2005 | TÜBİTAK |
Robot Assisted endoscope Control that can be controlled by the surgical tools (NeuRoboScope) | Doç. Dr. M. İ. Can DEDE | 2016 | TÜBİTAK |
Titreşim Ölçümlerine Dayanan Hasar Azaltıcı Kontrol Ve Ömür Uzatma Simülatörü | Prof. Dr. Serhan Özdemir | 2010 | TÜBİTAK |
Kinematically Redundant Laser Cutting Machine Design | Doç. Dr. M. İ. Can Dede | 2014 | SANTEZ |
Çok Amaçlı Bomba İmha Robotu için Tamamen Mekanik Çabuk Değiştirilebilinir Eklemin Mekatronik Tasarımı | Doç.Dr. E. Faruk Keçeci | 2005 | DPT |
GPS-INS İle Otonom Yol Bulma | Prof.Dr.Serhan Özdemir | 2004 | DPT |
6 Serbestlik Dereceli Paralel Manipulatör Simülasyon ve Kontrolü | Prof.Dr.Rasim Alizade | 2002 | İYTE-BAP |
Akustik Emisyon İle Pasif Durum Gözleme | Prof. Dr. Serhan Özdemir | 2005 | İYTE-BAP |
Data Sürümlü Takviyeli Öğrenmeli Otomatik Modelleme | Prof. Dr. Serhan Özdemir | 2002 | İYTE-BAP |
Data Sürümlü, Takviyeli Öğrenmeli Otonom Ünite Tasarımı | Prof. Dr. Serhan Özdemir | 2002 | İYTE-BAP |
Deprem Sonrası Arama Çalışmaları için Kurtarma Robotu Tasarımı ve Prototip İmalatı | Doç.Dr. E. Faruk Keçeci | 2006 | İYTE-BAP |
Devingen Kalite Endeksiyle Niteliksel Makina Sağlığı İzleme | Prof. Dr. Serhan Özdemir | 2007 | İYTE-BAP |
Dinamik Ortamlarda Probabilistik Lokalizasyon ve Patika Tayini | Prof. Dr. Serhan Özdemir | 2003 | İYTE-BAP |
Internet Üzerinden Durum İzleme | Prof. Dr. Serhan Özdemir | 2006 | İYTE-BAP |
Küresel Mekanizmaların ve Modüler Manipülatörün Tasarımı ve Üretimi | Prof. Dr. Rasim Alizade | 2002 | İYTE-BAP |
Yetersiz Serbestlik Dereceli Uzaysal Paralel Manipülatörün Analizi, Sentezi ve Üretimi | Prof. Dr. Rasim Alizade | 2005 | İYTE-BAP |